Unit 1 INTRODUCTION TO RDBMS e Introduction to RDBMS, e Introduction to Open
Source software Postgre SQL, e Installation of open source software PostgreSQL on Windows
and Linux, e Data types of Postgre SQL

Introduction to RDBMS :

The relational model is an abstract theory of data which is based on mathematical theory,
introduced by Dr. E. F. Codd. The following table gives a list of relational terms & their
corresponding informal equivalent.

Sr. ; :

No. Formal relational terms Informal equivalent

1 Relation Table

2 Tuple Row or record

3 Cardinality Number of rows or records

4 Attribute Column or field

5 Degree No. of columns

6 Primary key Unique identifier

7 Domain Set of legal values or possible data values.

Consider following relational data structure.

Roll no | Name | Age

_ 1 Aiay |20 3

Relation 2 Bharat | 22 @
3 Mrunal [19
4 Kishor | 17

/
|<—Deg

Introduction to Open Source software PostgreSQL

PostgreSQL 1s a powerful, open source object-relational database system. It has more than 15
years of active development phase and a proven architecture that has earned it a strong
reputation for reliability, data integrity, and correctness.

This tutorial will give you a quick start with PostgreSQL and make you comfortable with
PostgreSQL programming.
What is PostgreSQL?

PostgreSQL (pronounced as post-gress-Q-L) is an open source relational database management
system (DBMS) developed by a worldwide team of volunteers. PostgreSQL is not controlled by
any corporation or other private entity and the source code 1s available free of charge.

A Brief History of PostgreSQL

PostgreSQL, originally called Postgres, was created at UCB by a computer science professor
named Michael Stonebraker. Stonebraker started Postgres in 1986 as a follow-up project to its
predecessor, Ingres, now owned by Computer Associates.

e 1977-1985 — A project called INGRES was developed.
o Proof-of-concept for relational databases
o Established the company Ingres in 1980
o Bought by Computer Associates in 1994

e 1986-1994 — POSTGRES

o Development of the concepts in INGRES with a focus on object orientation and
the query language - Quel

o The code base of INGRES was not used as a basis for POSTGRES

o Commercialized as Illustra (bought by Informix, bought by IBM)
e 1994-1995 — Postgres95

o Support for SQL was added in 1994

o Released as Postgres95 in 1995

o Re-released as PostgreSQL 6.0 in 1996

o Establishment of the PostgreSQL Global Development Team

Key Features of Postgre SQL

PostgreSQL runs on all major operating systems, including Linux, UNIX (AIX, BSD, HP-UX,
SGI IRIX, Mac OS X, Solaris, Tru64), and Windows. It supports text, images, sounds, and
video, and includes programming interfaces for C / C++, Java, Perl, Python, Ruby, Tcl and
Open Database Connectivity (ODBC).

PostgreSQL supports a large part of the SQL standard and offers many modern features
including the following —

e Complex SQL queries

e SQL Sub-selects

o Foreign keys

e Trigger

o Views

o Transactions

e Multiversion concurrency control (MVCC)
e Streaming Replication (as of 9.0)

e Hot Standby (as 0f9.0)

You can check official documentation of PostgreSQL to understand the above-mentioned
features. PostgreSQL can be extended by the user in many ways. For example by adding new —

e Data types

e Functions

e Operators

e Aggregate functions
e Index methods

Procedural Languages Support

PostgreSQL supports four standard procedural languages, which allows the users to write their
own code in any of the languages and it can be executed by PostgreSQL database server. These
procedural languages are - PL/pgSQL, PL/Tcl, PL/Perl and PL/Python. Besides, other non-
standard procedural languages like PL/PHP, PL/V8, PL/Ruby, PL/Java, etc., are also supported.

Installing PostgreSQL on Windows

Follow the given steps to install PostgreSQL on your Windows machine. Make sure you have
turned Third Party Antivirus off while installing.

Pick the version number of PostgreSQL you want and, as exactly as possible, the
platform you want from EnterpriseDB

I downloaded postgresql-9.2.4-1-windows.exe for my Windows PC running in 32bit
so let us run postgresql-9.2.4-1-windows.exe as administrator to install

PostgreSQL. Select the location where you want to install it. By default, it is installed
within Program Files folder.

mode,

Installation Directory

Fiense spadly the directary where PoskgreSCL vall be instalied.

BitRack fnstaller

[<park || met> || coecet |

e The next step of the installation process would be to select the directory where your data
would be stored. By default, it is stored under the "data" directory.

Data Directory

Flease seleck directory under which ko store vour daka,
Diata Direckory :iProgram FlesiPostoreSaLl9. Zidata | &

FitReck Ints/ler

[«< Back II Mext =]E Cancel]

e Next, the setup asks for password, so you can use your favorite password.

LS Setup

Flease provide & password for the databese superuser (poskares)

Password [« =

Rsbupe pazewmard | L |

FitRack installer

[= Bk I[Tk > H Cance

o The next step; keep the port as default.

CEx

Flease seleck the port rumber the server shoud sten o,
Port | 5432 ' ' 1

BitReck frstaller

e L 1] o |

¢ In the next step, when asked for "Locale", I selected "English, United States".

e [t takes a while to install PostgreSQL on your system. On completion of the installation
process, you will get the following screen. Uncheck the checkbox and click the Finish
button.

B
N, Completing the PostgreSOL Setup Wizard

‘ Setun has finished instaling PostgreS0L on wour computar.
L'mhstsckﬂuﬁsdal'txit?
j [StackBuilder may b used o dowrioad and install

additional bacls, drivers and applications io
complemenk your Postgre30L instalation..

PostgreSQL

Packagad by

After the installation process is completed, you can access pgAdmin III, StackBuilder and
PostgreSQL shell from your Program Menu under PostgreSQL 9.2.

Data types of PostgreSQL

Numeric Types

Numeric types consist of two-byte, four-byte, and eight-byte integers, four-byte and eight-byte
floating-point numbers, and selectable-precision decimals. The following table lists the

available types.
Name Storage Size Description Range
smallint 2 bytes small-range integer -32768 to +32767
integer 4 bytes typlc?i;?g‘g:e o 22147483648 to +2147483647
. - .] -9223372036854775808 to
bigint 8 bytes large-range integer 0223372036854775807
user-specified up to 131072 digits before the decimal
decimal variable recisiI;n exact point; up to 16383 digits after the decimal
p ? point
user-specified up to 131072 digits before the decimal
numeric variable recisil())n e point; up to 16383 digits after the decimal
p ’ point
real 4 bytes prec‘i{salilgle'llt)iféxa i 6 decimal digits precision
double variable- . . .
i 8 bytes SRR 15 decimal digits precision
small
smallserial 2 bytes autoincrementing 1 to 32767
integer
serial 4 bytes a“t‘”?;tr:g:;“““g 1 to 2147483647
large
bigserial 8 bytes autoincrementing 1 t0 9223372036854775807

integer

Monetary Types

The money type stores a currency amount with a fixed fractional precision. Values of
the numeric, int, and bigint data types can be cast to money. Using Floating point numbers is
not recommended to handle money due to the potential for rounding errors.

Name | Storage Size Description Range

money 8 bytes currency amount | -92233720368547758.08 to +92233720368547758.07

Character Types
The table given below lists the general-purpose character types available in PostgreSQL.

S. Name & Description
No.
1 character varying(n), varchar(n)
variable-length with limit
) character(n), char(n)
fixed-length, blank padded
3 text

variable unlimited length

Binary Data Types

The bytea data type allows storage of binary strings as in the table given below.

Name Storage Size Description
bytea 1 or 4 bytes plus the actual binary string variable-length binary string
Date/Time Types

PostgreSQL supports a full set of SQL date and time types, as shown in table below. Dates are
counted according to the Gregorian calendar. Here, all the types have resolution of 1
microsecond / 14 digits except date type, whose resolution is day.

Name Storage Size Description Low Value High Value

both date and time
(no time zone)

timestamp [(p)]

[without time zone | 8 bytes

4713 BC 294276 AD

both date and

TIMESTAMPTZ 8 bytes fime, with time

4713 BC 294276 AD

Zone

date 4 bytes Haiz (Iég}gme B 4713 BC 5874897 AD
time [(p)] [without time of day (no . o
ok B 8 bytes ot 00:00:00 24:00:00

hime [(p)] withiime 12bytes | tmesofdayonly, | o.65.0011450 | 24:00:00-1459

zone with time zone
interval [fields | [(p)] 12 bytes time interval 47?22;)5000 178000000 years
Boolean Type

PostgreSQL provides the standard SQL type Boolean. The Boolean data type can have the
states frue, false, and a third state, unknown, which is represented by the SQL null value.

Name Storage Size Description
boolean 1 byte state of true or false
Enumerated Type

Enumerated (enum) types are data types that comprise a static, ordered set of values. They are
equivalent to the enum types supported in a number of programming languages.

Unlike other types, Enumerated Types need to be created using CREATE TYPE command.
This type 1s used to store a static, ordered set of values. For example compass directions, 1.e.,
NORTH, SOUTH, EAST, and WEST or days of the week as shown below —

CREATE TYPE week AS ENUM ('Mon', '"Tue', " Wed, 'Thu', 'Fr1', 'Sat’, 'Sun’);

Enumerated, once created, can be used like any other types.

Geometric Type

Geometric data types represent two-dimensional spatial objects. The most fundamental type, the
point, forms the basis for all of the other types.

Name Storage Size Representation Description
point 16 bytes Point on a plane (xy)
line 32 bytes hlfu'.ute line (not fully (x1.y]).(x2.y2))
implemented)
lseg 32 bytes Finite line segment (x1,y1).,(x2,y2))

box 32 bytes Rectangular box (x1,y1).,(x2.y2))
path 16+16n bytes Closed path (similar to polygon) (xlyl),..)
path 16+16n bytes Open path [(x1.y]),...]
polygon 40+16n Polygon (similar to closed path) (xlLyl),..)
circle 24 bytes Circle <(xy).r> (center point and

radius)

Unit 2 DATABASE AND TABLE OPERATIONS [L : 05 M: 10] e Database Operations -
1.Creating a Database 2.Dropping the Database Table Operations — 1. Create 2. Alter3. Drop
Database Operations-

1. Creating a Database

The CREATE DATABASE statement allows you to create a new PostgreSQL database.
The following shows the syntax of the CREATE DATABASE statement:
CREATE DATABASE database name
WITH
[OWNER = role name]
[TEMPLATE = template]
[ENCODING = encoding]
[LC_COLLATE = collate]
[LC_CTYPE = ctype]
[TABLESPACE = tablespace name]
[ALLOW_CONNECTIONS = true | false]
[CONNECTION LIMIT = max_concurent connection]
[IS TEMPLATE = true | false |
Code language: PostgreSQL SQL dialect and PL/pgSQL (pgsql)
To execute the CREATE DATABASE statement you need to have a superuser role or a
special CREATEDB privilege.
To create a new database:

o First, specify the name of the new database after the CREATE DATABASE keywords. The
database name must be unique in the PostgreSQL database server. If you try to create a
database whose name already exists, PostgreSQL will issue an error.

¢ Then, specify one or more parameters for the new database.

Parameters

OWNER

Assign a role that will be the owner of the database. If you omit the OWNER option, the owner
of the database 1s the role that you use to execute the CREATE DATABASE statement.
TEMPLATE

Specify the template database from which the new database is created. By default, PostgreSQL
uses the templatel database as the template database if you don’t explicitly specify the template
database.

ENCODING

Determine the character set encoding in the new database.

LC_COLLATE

Specify the collation order (LC COLLATE) that the new database will use. This parameter
affects the sort order of string in the queries that contain the ORDER BY clause. It defaults to
the LC_COLLATE of the template database.

LC_CTYPE

Specify the character classification that the new database will use. It affects the classification of
character e.g., lower, upper, and digit. It defaults to the LC CTYPE of the template database
TABLESPACE

Specify the tablespace name for the new database. The default is the tablespace of the template
database.

CONNECTION LIMIT

Specify the maximum concurrent connections to the new database. The default is -1 1e.,
unlimited. This parameter is useful in the shared hosting environments where you can configure
the maximum concurent connections for a particular database.

ALLOW_CONNECTIONS

The allow connections parameter is a boolean value. If it 1s false, you cannot connect to the
database.

TABLESPACE

Specify the tablespace that the new database will use. It defaults to the tablespace of the template
database.

IS_ TEMPLATE

If the IS TEMPLATE is true, any user with the CREATEDB privilege can clone it. If false, only
superusers or the database owner can clone it.

PostgreSQL CREATE DATABASE examples

1) Create a database with default parameters
First, log in to the PostgreSQL using any client tool.
Second, execute the following statement to a new database with default parameters:

CREATE DATABASE sales;

Code language: PostgreSQL SQL dialect and PL/pgSQL (pgsql)

PostgreSQL created a new database named sales that has default parameters from the default
template database (templatel).

Third, if you use the psql client tool, you can view all the databases in the current PostgreSQL
database server using the \l command:

\l

2) Create a database with some parameters
The following example uses the CREATE DATABASE statement to create a database
named college with some parameters:

CREATE DATABASE college
WITH
ENCODING='UTF8'
OWNER = postgres
CONNECTION LIMIT=100

In this example, we created the postgres database with the encoding UTFS8, the owner is hr and
the number of concurrent connections to the database 1s 100.

2. Dropping the Database
Once a database 1s no longer needed, you can drop i1t by wusing the DROP
DATABASE statement.
The following illustrates the syntax of the DROP DATABASE statement:
DROP DATABASE [IF EXISTS] database name;
Code language: SQL (Structured Query Language) (sql)
To delete a database:

e Specify the name of the database that you want to delete after the DROP
DATABASE clause.
¢ Use IF EXISTS to prevent an error from removing a non-existent database. PostgreSQL
will issue a notice instead.
The DROP DATABASE statement deletes catalog entries and data directory permanently. This
action cannot be undone so you have to use it with caution.
Only superusers and the database owner can execute the DROP DATABASE statement. In
addition, you cannot execute the DROP DATABASE statement if the database still has active
connections. In this case, you need to disconnect from the database and connect to another
database e.g., postgres to execute the DROP DATABASE statement.
PostgreSQL also provides a utility program named dropdbthat allows you to remove a database.
The dropdb program executes the DROP DATABASE statement behind the scenes.

1) Drop a database that has no active connection example

To remove the hrdbdatabase, use the hrdb owner to comnect to a database other
than hrdbdatabase e.g., postgres and issue the following statement:

DROP DATABASE hrdb;

Code language: SQL (Structured Query Language) (sql)

PostgreSQL deleted the hrdbdatabase.

2) Drop a database that has active connections example
The following statement deletes the testdbldatabase:
DROP DATABASE testdbl ;

Code language: SQL (Structured Query Language) (sql)
However, PostgreSQL issued an error as follows:
ERROR: database "testdbl" is being accessed by other users
SQL state: 55006
Detail: There is 1 other session using the database.
Code language: JavaScript (javascript)
To drop the testdbl database, you need to terminate the active connection and drop the database.
First, query the pg stat activityview to find what activities are taking place against
the testdbldatabase:
SELECT *
FROM pg stat activity
WHERE datname = 'testdbl1';
Code language: SQL (Structured Query Language) (sql)
datid datname pid usesysid usename applicaticn_name client_addr
] 24941 testdbl 6140 10 postgres 127.001

The testdbldatabase has one connection from localhosttherefore it is safe to terminate this
connection and remove the database.
Second, terminate the connection to the testdbldatabase by using the following statement:
SELECT
pg_terminate backend (pg stat activity.pid)
FROM
pg_stat activity
WHERE
pg_stat activity.datname = 'testdbl';
Code language: SQL (Structured Query Language) (sql)
Third, issue the DROP DATABASE command to remove the testdbldatabase:
DROP DATABASE testdbl ;
Code language: SQL (Structured Query Language) (sql)
PostgreSQL drops the testdblpermanently.
In this tutorial, you have learned how to use the PostgreSQL DROP DATABASE statement to
drop a database. In addition, you also learned how to delete a database that has active
connections.

3. Table Operations
CREATE TABLE-

The PostgreSQL CREATE TABLE statement is used to create a new table in any of the given
database.

Syntax

Basic syntax of CREATE TABLE statement 1s as follows —
CREATE TABLE table name(

columnl datatype,

column? datatype,

column3 datatype,

columnN datatype);

CREATE TABLE is a keyword, telling the database system to create a new table. The unique
name or identifier for the table follows the CREATE TABLE statement. Initially, the empty
table in the current database 1s owned by the user issuing the command.

Then, in brackets, comes the list, defining each column in the table and what sort of data type it
1s. The syntax will become clear with an example given below.

Examples

The following is an example, which creates a EMPLOYEE table

CREATE TABLE employee(
EMPID INT,
NAME TEXT,

AGE INT,

ADDRESS CHAR(50),
SALARY REAL

%

Let us create one more table, which we will use in our exercises in subsequent chapters —

CREATE TABLE DEPARTMENT(

DEPTID INT,
DEPT NAME VARCHAR(20),
LOCATION VARCHAR(20)

I

You can verify if your table has been created successfully using \d command, which will be
used to list down all the tables in an attached database.

When the above two tables were created , we can list all the tables which are available in the
databases by following command.

SELECT * FROM PG TABLES;

Describe the Table
To get information on columns of a table, you query the information schema.columns catalog.
For example:
SELECT
table name,
column_name,
data type
FROM
information_schema.columns
WHERE
table name = 'employee';

ALTER TABLE

The PostgreSQL ALTER TABLE command 1s used to add, delete or modify columns in an
existing table.

You would also use ALTER TABLE command to add and drop various constraints on an
existing table.

Syntax

ALTER TABLE (ADD)

The basic syntax of ALTER TABLE to add a new column in an existing table is as follows —
ALTER TABLE table name
ADD column_name datatype;

EXAMPLE:

If we consider the above table EMPLOYEE for alter the table. Add the new column
contact no , the example is as follows

ALTER TABLE EMPLOYEE
ADD CONTACT_NO INT;

ALTER TABLE (modify)

The basic syntax of ALTER TABLE to change the DATA TYPE of a column in a table is as

follows —
ALTER TABLE table name ALTER COLUMN column name TYPE datatype;

Example:
ALTER TABLE employee
ALTER COLUMN NAME TYPE VARCHAR(20)

ALTER TABLE(DROP)

The basic syntax of ALTER TABLE to DROP COLUMN in an existing table 1s as follows —
ALTER TABLE table name DROP COLUMN column_name;

Example

ALTER TABLE EMPLOYEE
DROP COLUMN CONTACT_NO;

DROP TABLE-

The PostgreSQL DROP TABLE statement is used to remove a table definition and all
associated data, indexes, rules, triggers, and constraints for that table.

You have to be careful while using this command because once a table is deleted then all the
information available in the table would also be lost forever.

Syntax

Basic syntax of DROP TABLE statement is as follows —
DROP TABLE table name;

To drop a table from the database, you use the pror TapLE Statement as
follows:

DROP TABLE [IF EXISTS] table name

[CASCADE | RESTRICT];

Code language: SQL (Structured Query Language) (sqgl)

In this syntax:

« First, specify the name of the table that you want to drop after the proe
TABLE Keywords.
« Second, use the 1r ExrsTs option to remove the table only if it exists.

If you remove a table that does not exist, PostgreSQL issues an error. To
avoid this situation, you can use the 1r extsts option.

In case the table that you want to remove is used in other objects such

as views, triggers, functions, and stored procedures, the pror TaRLE Cannot
remove the table. In this case, you have two options:

o The cascape option allows you to remove the table and its dependent
objects.

« The restrIcT Option rejects the removal if there is any object depends on
the table. The restrIcT Option is the default if you don't explicitly specify it
in the prop taBLE Statement.

To remove multiple tables at once, you can place a comma-separated list of

tables after the pror taBLE Keywords:
DROP TABLE [IF EXISTS]

table name 1,

table name 2,

[CASCADE | RESTRICT]:

Code language: CSS (cs3)

Note that you need to have the roles of the superuser, schema owner, or table
owner in order to drop tables.

Example:

DROP TABLE student;

This command Drop the table student
DROP TABLE student, teacher;

Above command Drop multiple tables simultaneously
DROP TABLE library cascade;

The command Drop library table and its related object

Unit 3 SQL — STATEMENTS, OPERATORS, FUNCTIONS [L : 10 M: 20] e Statements -
SELECT, INSERT, UPDATE, DELETE e Null value and Default value ® Operators - Arithmetic,
Logical, Comparison, Bitwise, Relational e Functions - Aggregate functions, Date and Time
functions, String functionse Clauses:- where, order by, AND, OR, Between, Like, CASE, Distinct,
Group by, Having

SELECT Statement

The SELECT statement is used to select data from a database.

The result is stored in a result table, called the result-set.

SQL SELECT Syntax

SELECT column_name.column_name
FROM table name;

and

SELECT * FROM ftable name,

SELECT Column Example

The following SQL statement selects the "CustomerName" and "City" columns from the
"Customers" table:

Example

SELECT CustomerName,City FROM Customers;

The SQL SELECT DISTINCT Statement

In a table, a column may contain many duplicate values; and sometimes you only want to list the
different (distinct) values.

The DISTINCT keyword can be used to return only distinct (different) values.

SQL SELECT DISTINCT Syntax

SELECT DISTINCT column_name,column_name
FROM table name;,
SELECT DISTINCT Example

The following SQL statement selects only the distinct values from the "City" columns from the
"Customers" table:

Example

SELECT DISTINCT City FROM Customers;

INSERT INTO Statement

The INSERT INTO statement is used to insert new records in a table.

SQL INSERT INTO Syntax
It is possible to write the INSERT INTO statement in two forms.

The first form does not specify the column names where the data will be inserted, only their
values:

INSERT INTO table name
VALUES (valuel,value2 value3,..),

The second form specifies both the column names and the values to be inserted:

INSERT INTO table name (columnl column2, column3,...)
VALUES (valuel,value2 value3,...),

INSERT INTO Example
Assume we wish to insert a new row in the "Customers" table.

We can use the following SQL statement:
Example

INSERT INTO Customers (CustomerName, ContactName, Address, City, PostalCode, Country)
VALUES ('Cardinal',"Tom B. Erichsen','Skagen 21','Stavanger','4006','Norway'),

UPDATE Statement

SQL SERVER: UPDATE STATEMENT

This SQL Server tutorial explains how to use the UPDATE statement in SQL Server (Transact-
SQL) with syntax and examples.

DESCRIPTION

The PostgreSQL UPDATE statement is used to update existing records in a table in Postgre
database. There are 3 syntaxes for the UPDATE statement depending on whether you are
performing a traditional update or updating one table with data from another table.

SYNTAX
The syntax for the UPDATE statement when updating one table in PostgreSQL) 1s:

UPDATE table
SET columnl = expressionl,

column?2 = expression2,

WHERE conditions;

OR
The syntax for the UPDATE statement when updating one table with data from another table in

syntax 1s

UPDATE tablel
SET columnl = (SELECT expressionl
FROM table2
WHERE conditions)
WHERE conditions;

DELETE STATEMENT

DESCRIPTION

DELETE statement is used to delete a single record or multiple records from a table in SQL
Server.

SYNTAX

In the simplest form, the syntax for the DELETE statement 1is:

DELETE FROM table
WHERE conditions;

However, the full syntax for the DELETE statement in PostgreSQL Server 1is:

¢ NULL Value and Default Value
NOT NULL Constraint

By default, a column can hold NULL values. If you do not want a column to have a NULL value,
then you need to define such constraint on this column specifying that NULL is now not allowed
for that column. A NOT NULL constraint is always written as a column constraint.

A NULL 1s not the same as no data; rather, it represents unknown data.
Example

For example, the following PostgreSQL statement creates a new table called EMPLOYEE and
adds five columns, three of which, ID and NAME and AGE, specify not to accept NULL values

CREATE TABLE EMPLOYEE(

ID INT NOT NULL,
NAME TEXT NOT NULL,
AGE INT NOT NULL,

ADDRESS CHAR(50),
SALARY REAL

The DEFAULT Constraint 1s used to fill a column with a default and fixed value. The value
will be added to all new records when no other value 1s provided.

Using DEFAULT on CREATE TABLE :

Syntax :
CREATE TABLE tablename (
Columnname DEFAULT 'defaultvalue');

Example —
To set a DEFAULT value for the “Location” column when the “Geeks™ table 1s created —

CREATE TABLE student (

SID int NOT NULL,

sname varchar(20),

Age int,

Location varchar(20) DEFAULT 'Bhusawal’);

CREATE TABLE jobs (

JOB ID varchar(10) NOT NULL UNIQUE,
JOB_TITLE varchar(35) NOT NULL DEFAULT "',
MIN SALARY decimal(6,0) DEFAULT 8000,
MAX SALARY decimal(6,0) DEFAULT NULL
);
e Operators - Arithmetic, Logical, Comparison, Bitwise, Relational

An operator 1s a reserved word or a character used primarily in a PostgreSQL statement's
WHERE clause to perform operation(s), such as comparisons and arithmetic operations.

Operators are used to specify conditions in a PostgreSQL statement and to serve as conjunctions
for multiple conditions in a statement.

e Arithmetic operators
o Comparison operators
e Logical operators

e Bitwise operators

PostgreSQL Arithmetic Operators

Assume variable a holds 2 and variable b holds 3, then —

Example

Operator Description Example

2 Add1t101"1 - Adds values on either side of the il BivE S
operator
Subtraction - Subtracts right hand operand b will eive -1

i from left hand operand a-bwilglve-

" Multlphcatlon - Ml‘lltlplles values on either 5T Gl 60 6
side of the operator
Division - Divides left hand operand by s

J right hand operand byl gl
Modulus - Divides left hand operand by _

0 0

% right hand operand and returns remainder sl give |

- Exponentiation - This gives the exponent

value of the right hand operand a’”bwill give 8

square root

Cube root

Factorial

factorial (prefix operator)

PostgreSQL Comparison Operators

/25.0 will give
5

I/ 27.0 will give
3

51 will give 120

5 will give
120

Assume variable a holds 10 and variable b holds 20, then —

Show Examples

Operator

Description

Example

Checks if the values of two operands are
equal or not, if yes then condition
becomes true.

(a=b)1s not true.

Checks if the values of two operands are
equal or not, if values are not equal then
condition becomes true.

(a!=D>) 1s true.

<>

Checks if the values of two operands are
equal or not, if values are not equal then
condition becomes true.

(a<>Db)is true.

Checks if the value of left operand is
greater than the value of right operand, if
yes then condition becomes true.

(a > b) 1s not true.

Checks if the value of left operand is
less than the value of right operand, if
yes then condition becomes true.

(a <b)is true.

Checks if the value of left operand is
greater than or equal to the value of right
operand, if yes then condition becomes
true.

(a>=Db) is not
frue.

Checks if the value of left operand is
less than or equal to the value of right

(a<=Db) is true.

operand, if yes then condition becomes
true.

PostgreSQL Logical Operators
Here 1s a list of all the logical operators available in PostgresSQL.

Show Examples

S. Operator & Description

No.
AND

1 The AND operator allows the existence of multiple
conditions in a PostgresSQL statement's WHERE
clause.
NOT

The NOT operator reverses the meaning of the

2 logical operator with which it is used. Eg. NOT
EXISTS, NOT BETWEEN, NOT IN etc. This is
negate operator.

OR

The OR operator 1s used to combine multiple
conditions in a PostgresSQL statement's WHERE
clause.

PostgreSQL Bit String Operators

Bitwise operator works on bits and performs bit-by-bit operation. The truth table for & and | is as
follows —

0 0 |0 0
0 1 0 1
1 1 1 1

Assume if A = 60; and B = 13; now in binary format they will be as follows —

A=00111100

B =0000 1101

A&B =00001100

AB=00111101

~A =11000011

Show Examples

The Bitwise operators supported by PostgreSQL are listed in the following table —

Operator | Description Example
Bmary ANDOperator, . | faus By will 5ivaty
& copies a bit to the result if it S
D) which 1s 0000 1100
exists in both operands.
Binary OR Operator copies a1
abitifitexists ineither | > |) Will give 61
] which1s 0011 1101
operand.
(~A) will give -61
Binary Ones Complement which is 1100 0011
~ Operator 1s unary and has in 2's complement
the effect of 'flipping’ bits. form due to a signed
binary number.
Binary Left Shift Operator.
The left operands value 1s A << 2 will give
<< moved left by the number 240 whichi1s 1111
of bits specified by the right | 0000
operand.
Binary Right Shift —
>> Operator. The left operands éﬁ;ﬁis‘ggo’% \;el } f
value 1s moved right by the

number of bits specified by
the right operand.

A # B will give 49

bitwise XOR. which is 0100 1001

AGGREGATE FUNCTIONS: -

function serves the purpose of manipulating data items and returning a result.
Functions are also capable of accepting user supplied variable or constant and
operating on them. Such variables or constant are called arguments. Any
number of arguments can be passed to the function in the following format,

Function_name(argumetl ,argumet?2,......)

PostgreSQL function can be club together depending upon wheatear they operate on a
single row or a group of single retrieving a table. According a function can be classified

as follows,

Group function /Aggregate Function:-
Functions that act on a set of values are called group functions.

E.g. Sum() is a function which calculate the total set of numbers. A group function

returns a single result row for a group of queried rows.

There are five group /aggregate functions:-

» AVG(): -
Returns an average value of ‘n’ ignoring null values in acloumn.
Syntax:-
AVG(n)

E.g. 1) List the average sale price from product master table.

Select AVG(sale_price)
From product_master;
> AVG
2804000
ii) List average salary of dept no 10

select AVG(salary)

from employee
where dept_no=10;
- AVG (salary)
567000

» COUNT(): -
Returns the no. of rows where the expression is not null

E.g. i) How many product exist I the prod_master table.
Select COUNT(prod_no)
From prod_master;
- count(prod_no)
20
ii) How many employee works in department no 10

select COUNT(employee_no)
from employee

where dept no=10;

- COUNT(employee)

28

» MAX():-
Returns the maximum value of expression
Syntax:-
MAX(expression)

Eg. i) List the maximum salary of employee table
Select MAX(salary)
From employee;

ii) List the maximum salary in dept_no 10

Select MAX(salary)
From employee

Where dept_no=10;
» MIN():-
It returns the minimum value from expression.

Syntax:-

MIN(expression)

E.g. i) Display the minimum salary from emp table.
Select MIN(salary)
From emp;
ii) Select the minimum salary from dept_no 10
Select MIN(salary)
From emp
Where dept_no=10;

> SUM() :-
Returns the sum of values ofn’
Syntax:-
SUM(n)

E.g. i) Display the total salary expenses from employee table.
Select SUM(salary)
From employee;
ii) Display the total salary from dept_no 10.
Select SUM(salary)
From employee
Where dept_no=10;

String Functions
Function that act an only one value at a time are called scalar function. A single
row function returns one result for every row of a queried table.

I) String Function:-
Works for string datatype.
1) LOWER():-

Returns character with all letters in lower case.
Syntax:- LOWER(char)
E.g. i) select LOWER('RAMESH)

ii) Select LOWER(emp_name)
from emp;

iii) select LOWER(emp_name)
from emp
where dept_no=10;

2) UPPER() :-
Returns character with all letters in uppercase.
Syntax:- UPPER(char)
E.g. 1) Select UPPER(‘sunil’)

3) INTICAP():-
Returns a string with a first letter of each word I uppercase.
Syntax:- INTICAP(char)
E.g. i) select INTICAP(‘RAM)

ii) select INTICAP(emp_name)
from employee;

4) SUBSTR():-
Returns operation of character beginning at character ‘m’ and going up to character ‘n’
is up to the last char in the string. The first position of character is 1.

Syntax:- SUBSTR(char,m,)

E.g. select SUBSTR(‘ulka’,2,4)
From dual;

5) LENGTH():-
Returns the length of a word
Syntax:- LENGTH(word)
E.g. i) select LENGTH(‘my name’)

ii) select length(‘emp_name’)
from employee
where emp_no=1;

6) LTRIM():-
Removes character from the left of character with initial character remove up to the
first character not in the set.
Syntax:- LTRIM(char] , set])
E.g. select LTRIM['NISHA’,'N’)

From dual;
- ISHA

7) RTRIM():-
Returns character with final character removed after the last character not in the set.
Set is optional.
Syntax:- RTRIM(char], set])
E.g. i) select RTRIM(‘SUNILA’,’A’)

- SUNIL
ii) select empno,RTRIM(‘emp_name’),salary

from emp;

Following are also String functions in tabular form with example

Function Description Example Result
ASCII Return the ASCII code value [SELECT ASCII(“A”) 65

of a character or Unicode

code point of a UTF8

character
CHR Convert an ASCII codetoa |SELECT CHR(65) ‘A’

character or a Unicode code
point to a UTF8 character

CONCAT Concatenate two or more SELECT CONCAT(A'B'C") [‘ABC’
strings into one

CONCAT_WS Concatenate strings with a CONCAT WS(’AB,’C’) [(ABC

2 2

separator

FORMAT Format arguments based on a [FORMAT('Hello %s','Students’) |"Hello
format string Students’

INITCAP Convert words ina string to |SELECT INITCAP(*hI tHERE”) |Hi There
title case

LEFT Return the first n character in |[SELECT LEFT(*ABC’,1) ‘A’
a string

LENGTH Return the number of SELECT LENGTH(‘ABC”) 3
characters in a string

LOWER Convert a string to lowercase |SELECT LOWER(‘hI tHERE”) [‘hi there’

Function Description Example Result
LPAD Pad on the left a a string with [SELECT LPAD('12', 5,'00") ‘00012°
a character to a certain length
LTRIM Remove the longest string that|SELECT LTRIM(00123”) b
contains specified characters
from the left of the input
string
MD5 Return MD5 hash of a string |[MDS5(*ABC”)
in hexadecimal
POSITION Return the location of a POSTION(‘B’in“‘A B C°) 3
substring in a string
REGEXP MATCH[Match a POSIX regular SELECT {A,BC}
ES expression against a string REGEXP MATCHES(*ABC’,
and returns the matching NADS, g
substrings
REGEXP REPLA |Replace substrings that match [REGEXP REPLACE(‘John ‘Doe,
CE a POSIX regular expression |Doe’,'(.*) ((*)’,"\2, \1"), John’
by a new substring
REPEAT Repeat string the REPEAT(**’, 5) S
specified number of times
REPLACE Replace all occurrences ina |REPLACE(*ABC’,’B’,’A”) ‘AAC
string of substring from with
substring to
REVERSE Return reversed string. REVERSE(*ABC’) ‘CBA’
RIGHT Return last n characters in the |RIGHT(*‘ABC”, 2) ‘BC
string. When n is negative,
return all but first n
characters.
RPAD Pad on the right of a string |RPAD(‘ABC’, 6, “x0’) ‘ABCxox’
with a character to a certain
length
RTRIM Remove the longest string that RTRIM (‘abexxzx’, ‘xyz”) ‘abc’

contains specified characters
from the right of the input
string

Function Description Example Result

SPLIT_PART Split a string on a specified [SPLIT PART(‘2017-12-31"7- [12’
delimiter and return nth RA)
substring

SUBSTRING Extract a substring from a SUBSTRING(*‘ABC’,1,1) A’
string

TRIM Remove the longest string that TRIM(* ABC) ‘ABC’

contains specified characters
from the left, right or both of
the input string

UPPER Convert a string to uppercase [UPPER(*hI tHERE”) ‘HI
THERE’

Date and Time functions

We typically have to calculate ages in business applications e.g., ages of people, years of
services of employees, etc. In PostgreSQL, you can use the AGE() function to achieve these
tasks.

The following illustrates the syntax of the AGE() function:

AGE(timestamp,timestamp);

Code language: SQL (Structured Query Language) (sql)

The AGE() function accepts two TIMEST AMP values. It subtracts the second argument from the
first one and returns an interval as a result.

See the following example:
SELECT AGE('2021-04-05"'2011-06-24");
"0 years 9 mons 11 days"
CURRENT_DATE
The PostgreSQL CURRENT DATE function returns the current date.
Syntax

The CURRENT DATE function is so simple that requires no argument as follows:

CURRENT _DATE

Return value

The CURRENT DATE function returns a DATE value that represents the current date.
Examples

The following example shows how to use the CURRENT DATE function to get the current
date:

SELECT CURRENT DATE;

The output is a DATE value as follows:

"2021-04-04"

CURRENT_TIME

The following illustrates the syntax of the CURRENT TIME function:

CURRENT TIME(precision)
Arguments
The CURRENT TIME function accepts one optional argument:

1) precision

The precision argument specifies the returned fractional seconds precision. If you omit the
precision argument, the result will include the full available precision.

Return value
The CURRENT TIME function returns a TIME WITH TIME ZONE value that represents the
current time with time zone.

Examples
The following example shows how to get the current time:

SELECT CURRENT TIME;
The output is a TIME WITH TIME ZONE value as follows:
"10:17:18.590166+05:30"

CURRENT_TIMESTAMP()
The PostgreSQL CURRENT TIMESTAMP() function returns the current date and time with
time zone, which 1s the time when the transaction starts.

Syntax
The following illustrates the syntax of the PostgreSQL CURRENT TIMESTAMP() function:

CURRENT TIMESTAMP(precision)

Code language: SQL (Structured Query Language) (sql)

Arguments

The PostgreSQL CURRENT TIMESTAMP() function accepts one optional argument.

1) precision

The precision specifies the number of digits in the fractional seconds precision in the second
field of the result.

If you omit the precision argument, the CURRENT TIMESTAMP() function will return a
TIMESTAMP with a time zone that includes the full fractional seconds precision available.

Return value
The CURRENT TIMESTAMP() function returns a TIMESTAMP WITH TIME ZONE that
represents the date and time at which the transaction started.

Examples
The following example shows how to use the CURRENT TIMESTAMP() function to get the
current date and time:

SELECT CURRENT TIMESTAMP;
The result is:
"2021-04-04 10:21:21.938079+05:30"

DATE_PART('field’, source)

These functions get the subfields. The field parameter needs to be a string value, not a
name.

The valid field names are: century, day, decade, dow, doy, epoch, hour, isodow, isoyear,
microseconds, millennium, milliseconds, minute, month, quarter, second, timezone,
timezone_hour, timezone_minute, week, year.

SELECT date part('day’, TIMESTAMP '2001-02-16 20:38:40");

date part

16
(1 row)

SELECT date part('hour', INTERVAL '4 hours 3 minutes');
date part

e Clauses:- where, order by, AND, OR, Between, Like, CASE, Distinct, Group by,
Having

SELECT Command -
The select statement is used to select a data from a table. The tabular result is stored

in the result table. For extracting all rows & all columns from a table use can use the

syntax

Select *
From <table ame>;
Eg. SELECT * from item;

It retrieves all items from item table. It is not compulsory to display or retrieve all the

data from table. The ways of filtering data will be,
i) Selected columns & all rows
ii) Selected rows & all columns

iii) Selected columns selected rows

FROM Command -

This SQL command is used for using table names from where we have to extract or
retrieve data. More than one tables also be used with from clause.

Syntax is
From <table name>
i Selected columns and all rows:-

The syntax is

select coll,clo2
from <table name >

eg. select item_no,ltem_name
from Item;

It retrieves only two columns on the screen.

Where Clause

ii) Selected rows & all columns:-

The table content all type of information but you want to view some specific type into
but the simple command like select & from can’t satisfy condition because there was no
condition set that informed about the need to view a specific set of rows from the tables.
PostgreSQL provides the option of using a where clause in an SQL query to apply a filter
on the rows retrieves when a where clause is added to a SQL queries the engine
compares each record in the table with the condition specify in the where clause

displays only those records that satisfy the specific condition. The Syntax is

select *
from <table name>
where <codition>;

eg. 1) select *
from Item
where Item_no=20;

2) select Item_no,rate
from Item
where Item_name like ‘A%’;

3) select item_name,qty

from Item
where raTe>=500;

with the where clause the following operators can be used

Operator Description

= equal

<> not equal

> greater than

< less than

>= greater than or equal to
<= less than or equal to
Between between the range

Like search for pattern

Following are the arithmetic operators can be used in SQL SELECT clause as follows

+ addition

- subtraction

/ division

* multiplication
2% exponential

() enclosed operation

Consider the table Item with (Item_no,name,rate,qty,date_of purchase)

If you apply the above arithmetic operator with SQL object clause the queries may

executes for the following statements,

» List all item_no either their totals(rate*qty)
select Item_no, rate*qty
from Item;
» List all the item no and their total with totals increased by 0.5

select Item_on, (rate*qty)+0.05
from Item;

» We can also provide the where clause in the above computation as select all those
item which are purchased on 10-Aug-06 with their increased rate by 50 Rs.

select Item_no, rate+50
From Item
Where date_of purchase >°10-Aug-06’;

LIKE Clause
The SQL LIKE clause 1s used to compare a value to similar values using wildcard operators.

There are two wildcards used in conjunction with the LIKE operator.

e The percent sign (%)
e The underscore ()

The percent sign represents zero, one or multiple characters. The underscore represents a single
number or character. These symbols can be used in combinations.

Syntax

The basic syntax of % and _ is as follows —

SELECT FROM table name
WHERE column LIKE 'XXXX%'

*Examples :
Finds any values that start with 200

SELECT *

FROM EMPLOYEE

WHERE SALARY: ::text LIKE '200%'
Finds any values that start with 200

Finds all rows which contains salary 45 anywhere

SELECT *
FROM EMPLOYEE
WHERE SALARY:. TEXT LIKE ' 45%'

List all name starts with ‘B’
SELECT *

FROM EMPLOYEE
WHERE ENAME LIKE ‘B%

AND ,OR Operators

The PostgreSQL AND and OR operators are used to combine multiple conditions to narrow
down selected data in a PostgreSQL statement. These two operators are called conjunctive
operators.

These operators provide a means to make multiple comparisons with different operators in the
same PostgreSQL statement.

The AND Operator

The AND operator allows the existence of multiple conditions in a PostgreSQL statement's
WHERE clause. While using AND operator, complete condition will be assumed true when all
the conditions are true. For example [condition]l] AND [condition2] will be true only when both

condition] and condition2 are true.

Syntax

The basic syntax of AND operator with WHERE clause 1s as follows —
SELECT columnl, column2, columnN

FROM table name
WHERE [condition]] AND [condition2]... AND [conditionN];

You can combine N number of conditions using AND operator. For an action to be taken by the
PostgreSQL statement, whether it be a transaction or query, all conditions separated by the AND
must be TRUE.

List all employees whose age is greater than 25 and salary greater than 65000
SELECT *

FROM EMPLOYEE

WHERE AGE >= 25 AND SALARY >= 65000;

The OR Operator

The OR operator 1s also used to combine multiple conditions in a PostgreSQL statement's
WHERE clause. While using OR operator, complete condition will be assumed true when at
least any of the conditions 1s true. For example [condition]] OR [condition2] will be true if either
conditionl or condition? is true.

Syntax

The basic syntax of OR operator with WHERE clause is as follows —

SELECT columnl, column2, columnN

FROM table name

WHERE [conditionl] OR [condition2]...OR [conditionN]

You can combine N number of conditions using OR operator. For an action to be taken by the
PostgreSQL statement, whether it be a transaction or query, only any ONE of the conditions
separated by the OR must be TRUE.

List all employees whose age is greater than 25 or salary greater than 65000

SELECT *
FROM COMPANY

WHERE AGE >= 25 OR SALARY >=65000; The PostgreSQL ORDER BY clause is used to
sort the data in ascending or descending order, based on one or more columns.

ORDER BY Clause

The PostgreSQL ORDER BY clause is used to sort the data in ascending or
descending order, based on one or more columns.

Syntax

The basic syntax of ORDER BY clause is as follows —

SELECT column-list

FROM table name

[WHERE condition]

[ORDER BY columnl, column2, .. columnN] [ASC | DESC];

You can use more than one column in the ORDER BY clause. Make sure whatever column you
are using to sort, that column should be available in column-list.

The following is an example, which would sort the result in ascending order by SALARY —

SELECT *
FROM EMPLOYEE
ORDER BY SALARY ASC

GROUP BY clause

The PostgreSQL GROUP BY clause is used in collaboration with the SELECT statement to
group together those rows in a table that have identical data. This i1s done to eliminate
redundancy in the output and/or compute aggregates that apply to these groups.

The GROUP BY clause follows the WHERE clause in a SELECT statement and precedes the
ORDER BY clause.

Syntax

The basic syntax of GROUP BY clause is given below. The GROUP BY clause must follow the
conditions in the WHERE clause and must precede the ORDER BY clause if one 1s used.

SELECT column-list

FROM table name

WHERE [conditions]

GROUP BY columnl, column2....columnN
ORDER BY columnl, column2....columnN

You can use more than one column in the GROUP BY clause. Make sure whatever column you
are using to group, that column should be available in column-list.
i) List all the dept_no with it’s average salary.

SELECT dept_no, avg(salary)
From emp
GROUP BY dept_no;

ii) How many employees works I each department.
SELECT dept_no,COUNT(#*
From emp
GROUP BY dept_no;

iii) Who earns more salary from each department .
SELECT dept_no,MAX(salary)
From emp
GROUP BY dept_no;

HAVING clause

The HAVING clause allows us to pick out particular rows where the function's result meets
some condition.

The WHERE clause places conditions on the selected columns, whereas the HAVING clause
places conditions on groups created by the GROUP BY clause.

Syntax
The following is the position of the HAVING clause ina SELECT query —

SELECT
FROM
WHERE
GROUP BY
HAVING
ORDER BY

The HAVING clause must follow the GROUP BY clause in a query and must also precede the
ORDER BY clause if used. The following is the syntax of the SELECT statement, including the
HAVING clause —

SELECT columnl, column2
FROM tablel, table2

WHERE [conditions]
GROUP BY columnl, column2
HAVING [conditions |
ORDER BY columnl, column2

i) List all the dept_no with their average salary>5000.
Select dept_no, avg(salary)
From emp
Group by dept_no
Having avg(salary)>5000;

ii) Which dept earns max salary from dept 10,20,30.
Select dept_no, max(salary)
From emp
Group by dept_no
Having dept_on IN (10,20,30);
DISTINCT Clause

The PostgreSQL DISTINCT keyword 1s used in conjunction with SELECT statement to
eliminate all the duplicate records and fetching only unique records.

There may be a situation when you have multiple duplicate records in a table. While fetching
such records, 1t makes more sense to fetch only unique records instead of fetching duplicate
records.

Syntax

The basic syntax of DISTINCT keyword to eliminate duplicate records is as follows —
SELECT DISTINCT name FROM COMPANY;

This would produce the following result where we do not have any duplicate entry —
SELECT DISTINCT columnl, column2,.....columnN

FROM table name

SELECT DISTINCT name FROM EMPLOYEE;

This would produce the following result where we do not have any duplicate entry —]

BETWEEN Clause

You can use BETWEEN clause to replace a combination of "greater than equal AND less than
equal" conditions.

value BETWEEN low AND high;
Code language: SQL (Structured Query Language) (sql)

If the value is greater than or equal to the low value and less than or equal to the high value, the
expression returns true, otherwise, it returns false.

You can rewrite the BETWEEN operator by using the greater than or equal (>=) or less than or
equal (<=) operators like this:

value >=low and value <= high

Code language: SQL (Structured Query Language) (sql)

If you want to check if a value is out of a range, you combine the NOT operator with the
BETW*EEN operator as follows:

value NOT BETWEEN low AND high;
Consider the Example of Student TABLE

Student

Rollno

Stu name

Class

Fesspaid date

Fees paid

1.

List all the students who paid > 5000 and < 9000 fees

SELECT *
FROM STUDENT
WHERE FEES PAID BETWEEN 5000 AND 9000

List all the student who paid fees between 5™ June 2020 and 15 Sept 2020
SELECT *

FROM STUDENT

WHERE FEESPAID DATE BETWEEN 2020-06-05" <2020-09-15

List all the student who does not paid fees between 10 Aug 2020 and 30 Aug 2020
SELECT *

FROM STUDENT
WHERE FEESPAID DATE NOT BETWEEN “2020-08-10" “2020-08-30"

CASE Statement

The PostgreSQL CASE expression is the same as [F/ELSE statement in other
programming languages. It allows you to add if-else logic to the query to form a powerful

query.

Since CASE is an expression, you can use it in any places where an expression can be
used e.g. . SELECT, WHERE, GROUP BY, and HAVING clause.

The CASE expression has two forms: general and simple form.

CASE
WHEN condition 1 THEN result 1
WHEN condition 2 THEN result 2
[WHEN ...]
[ELSE else_result]

END

In this syntax, each condition (condition 1, condition 2...)1s a boolean expression that
returns either true or false.

When a condition evaluates to false, the CASE expression evaluates the next condition
from the top to bottom until it finds a condition that evaluates to true.

If a condition evaluates to true, the CASE expression returns the corresponding result that
follows the condition. For example, if the condition 2 evaluates to true, the CASE
expression returns the result 2. Also, it immediately stops evaluating the next expression.

In case all conditions evaluate to false, the CASE expression returns the result
(else_result) that follows the ELSE keyword. If you omit the ELSE clause, the CASE
expression returns NULL.

Example:
Create the table

CREATE TABLE stu result
(SNAME VARCHAR(20),
SUBJECT VARCHAR(20),
marksinper numeric)

Insert the Records

INSERT INTO stu_result

VALUES(SADANAND MANE''ENGLISH',58),
(KISHOR YOGI',\"COMPUTER SCIENCE',78),
(RAJNI SAGNE",'TELECOM',87),
(SHRIKANT PATIL'MARATHI' 45),
(NAYNA BHOLE''HOME SCIENCE',32),
(ATUL PATIL','IT",90)

Write CASE statement

SELECT sname, subject,
CASE
WHEN marksinper >= 80 THEN 'DISTINCTION'
WHEN marksinper >= 40 and marksinper < 80 THEN 'PASS'
ELSE 'FAIL' END status from stu_result

Output of CASE statement

sname
SADANAND MANE
KISHOR YOGI
RAINI SAGNE
SHRIKANT PATIL
NAYNA BHOLE
ATUL PATIL

subject status
ENGLISH PASS
COMPUTER SC PASS
TELECOM DISTINCTION
MARATHI PASS

HOME SCIENC! FAIL

IT DISTINCTION

UNIT 4
VIEW, JOIN and DATA CONSTRANTS in SQL

L J

Syllabus e

* Constrainis - Data Integrity, Entity Integrity

* Keys- PRIMARY KEY, UNIQUE, FOREIGN KEY, CHECK, Not Null

* Views - Create, Alter, Drop

« Join - Joins, Cross Join, Inner Join, Outer Join, Self-Join

* Sub queries - Sub queries as Constants, Sub queries as Correlated Values, Sub queries as Lists
of Values, NOT IN and Sub queries with NULL Values, Sub queries Returning Multiple Colunins

» Statement - MERGE Statement

» Set operations - UNION, EXCEPT, and INTERSECT

* Clauses - ANY, ALL, and EXISTS Clauses

(10L 20 M)

Constraints :

Constraints are the rules enforced on data before the data get inserted into the table. These are used to
prevent invalid data from being entered into the database.

Constraints are used to ensure the accuracy and reliability of the datain the database.

Data integrity refers to the accuracy and consistency (validity) of data over its lifecycle whereas Entity
integrity ensures that each row in a table represents a single instance of the entity.

Ex. A column containing a salary of the employee should probably only accept positive values. But
there is no standard data type that accepts only positive numbers. At that time to specify the positive value
acceptance 1ule constraints can be defined at column level or table level.

Column level constraints are applied only to one column whereas table level constraints are applied to
the whole table.

The constraints available in Postgre SQL are as follows :

. NOT NULL Constraint — Ensures that a column cannot have NULL value.

. UNIQUE Constraint — Ensures that all values in a column are different.

. PRIMARY Key — Uniquely identifies each row/record in a database table.

. FOREIGN Key — Constraints data based on columns in other tables.

. CHECK Constraint — The CHECK constraint ensures that all values in a column satisfy certain

conditions. NOT NULL Constraint

By default, a column can hold NULL values. If you do not want a column to have a NULL value, then
you need to define such constraint on this column specifying that NULL is now not allowed for column. A
NOT NULL constraint is always used as a column level constraint.

To represent unknown data NULL is used but it is not same as no data.

For example

CREATE TABLE STUDENT (
ROLLNO INT PRIMARY KEY,
NAME TEXT NOT NULL,
MARKS INT NOT NULL,
ADDRESS CHAR(50));

UNIQUE Constraint

PostgreSQL provides the user with a UNIQUE constraint to prevent two records from having identical
values in a patticular column. UNIQUE constrain is used to make sure that values stored in a column or a
group of columns are unique across rows in a table.

Example

For example in the CUSTOMER table, if you want to prevent two or more people from having same
email-id.

Here, email-id column is set to UNIQUE, so that you cannot have two records with same email-id.

CREATE TABLE CUSTOMER
(

NAME TEXT NOT NULL,
ADDRESS CHAR (50),
Email-id TEXT UNIQUE

);

PRIMARY KEY Constraint

The PRIMARY KEY constraint uniquely identifies each record in a database table. Primary keys must
contain unique values. A primary key column cannot have NULL values. PRIMARY KEY constraint is a
combination of UNIQUE constraint and NOT NULL constraint.

A table can have only one primary key, which may consist of single or multiple fields. When multiple
fields are used as a primary key, they are called a composite key.

Example

Every student in STUDENT table is uniquely identified by rollno. Hence rollno is a primary key in a
table STUDENT.

CREATE TABLE STUDENT(
ROLLNO INT PRIMARY KEY,
NAME TEXT NOT NULL,
CLASS TEXT NOT NULL,
PERCENTAGE REAL

):

FOREIGN KEY Constraint

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in the same row of another table. We say this maintains the referential infegrity between
two related tables. They are called foreign keys because of the constraints are foreign; that is, outside the
table. Foreign keys are sometimes called a referencing key. The table that comprises the foreign key is

called the referencing table or child table, and the table to that the foreign key references are known as the
referenced table or parent table. It is possible for a table to have more than one foreign key.

Example

DEPT table has one primary key DEPT NO which is used as foreign key in table EMP.

CREATE TABLE DEPT

(

DEPT NO INT PRIMARY KEY,
DEPT NAME TEXT NOT NULL,
LOC TEXT

);

CREATE TABLE EMP

(

EMP ID INT PRIMARY KEY NOT NULL,
EMP NAME TEXT NOT NULL,

SALARY REAL NOT NULL,

DEPT NO INT references DEPT(DEPT NO)

);

We can also specify foreign key constraint at table level as follows,

CREATE TABLE EMP

(

EMP_ID INT PRIMARY KEY NOT NULL,

EMP_NAME TEXT NOT NULL,

DEPT_NO INT,

SALARY REAL NOT NULL,

FOREIGN KEY (DEPT _NO) REFERENCES DEPT(DEPT NO)

);

‘While using foreign key constraint ON UPDATE and ON DELETE options can have the following
actions :

1. NO ACTION : UPDATEs and DELETEs to the primary key are prohibited if referenced by a
foreign key row.
CASCADE : UPDATE:S to the primary key update all foreign key columns that reference it.
DELETEs on the primary key cause the deletion of all foreign key rows that reference it.

3. SET NULL : UPDATEs and DELETEs to the primary key row cause the foreign key to be set

to NULL.

CHECK Constraint

The CHECK Constraint enables a condition to check the value being entered into a record. If the
condition evaluates to false, the record violates the constraint and is not entered into the table. The CHECK
constraint enforces column value restrictions. Such constraints can restrict a column, for example, to a set

[

of values, only in between given domain, or age in between specific range.

Example :

CREATE TABLE CUST

(

ID INT PRIMARY KEY,

NAME TEXT NOT NULL,

AGE INT CHECK (AGE BETWEEN 22 AND 60),

CITY TEXT CHECK (CITY IN (BOMBAY','NASHIK' PUNE"))

%

Views :

Views are pseudo-tables. That is, they are not real tables; nevertheless appear as ordinary tables to
SELECT. A view can even represent joined tables. Because views are assigned separate permissions, you
can use them to restrict table access so that the users see only specific rows or columns of a table.

A view can contain all rows of a table or selected rows from one or more tables. A view can be created
from one or many tables, which depends on the written PostgreSQL query to create a view.

Since views are not ordinary tables, you may not be able to execute a DELETE, INSERT, or UPDATE
statement on a view.

Creating Views :

The PostgreSQL views are created using the CREATE VIEW statement. The Postgre SQL views can
be created from a single table, multiple tables, or another view.

The syntax for CREATE VIEW is as follows —

CREATE [TEMP | TEMPORARY| VIEW view name AS
SELECT columnl, column?2.....

FROM table name

WHERE [condition];

Multiple tables can be used in SELECT statement for creating view based on it. View can be created
in the temporary space by using the optional TEMP or TEMPORARY keyword. Such types of temporary
views are automatically dropped at the end of the current session.

Example :

In this example a view is created on table EMP which has five columns as EMP ID, EMP NAME,
DEPT NO, and SALARY. A view is created to work with only two columns EMP_ID and EMP NAME
of EMP table.

CREATE VIEW EMP_VIEW AS
SELECT EMP ID, EMP NAME FROM EMP;

View can be created from multiple tables as follows,

CREATE VIEW EMP_VIEW AS
SELECT E.EMP_ID, E.EEMP NAME.D.DEPT NAME FROM EMP E.DEPT D
WHERE EDEPT NO=D.DEPT NO;

You can now query EMP VIEW as though it were a table EMP.

SELECT * FROM EMP VIEW,

Alter Views

By using alter view statement you can change the definition of existing view or can rename it.

Example

ALTER VIEW EMP VIEW RENAME TO EMPV;

CREATE TABLE LOG (id int, ts timestamptz);

CREATE VIEW log_view AS SELECT * FROM LOG;

ALTER VIEW log_view ALTER COLUMN ts SET DEFAULT now();

Dropping Views

To drop a view the statement DROP VIEW with the view name can be used. The syntax for DROP

VIEW is as follows,

DROP VIEW view name;

Example

DROP VIEW EMP VIEW;

Joins
The PostgreSQL Joins clause is used to combine records from two or more tablesin a database. A JOIN

is a means for combining fields from two tables by using values common to each.

Join Types in Postgre SQL are —

. The CROSS JOIN

. The INNER JOIN

. The OUTER JOIN

. The SELF JOIN

The CROSS JOIN

A CROSS JOIN matches every row of the first table with every row of the second table. If the input

tables have x and y columns, respectively, the resulting table will have x+y columns. The syntax for CROSS

JOIN is as follows,

SELECT ... FROM tablel CROSS JOIN table2

Example

Consider the two tables CUSTOMER AND ORDER.

CUSTOMER ORDER
CUST NO NAME ORDER NO PRODUCT CUST _NO

1 STEPHEN 220 KEYBOARD 1
2 JOHN 365 PRINTER 3
3 ELON 512 SCANNER 3
4 STEVE

SELECT * FROM CUSTOMER CROSS JOIN ORDER,;

The above given query will produce the following result as,

CUST NO NAME ORDER NO PRODUCT CUST NO

1 STEPHEN 220 KEYBOARD 1

1 STEPHEN 365 PRINTER 3
1 STEPHEN 512 SCANNER 3
2 JOHN 220 KEYBOARD 1
2 JOHN 365 PRINTER 3
2 JOHN 512 SCANNER 3
3 ELON 220 KEYBOARD 1
3 ELON 365 PRINTER 3
3 ELON 512 SCANNER 3
4 STEVE 220 KEYBOARD 1
4 STEVE 365 PRINTER 3
4 STEVE 512 SCANNER 3
The INNER JOIN :

INNER JOIN returns all rows from both tables where there is a match. If there are rows in CUSTOMER
that does not have matches in ORDER, those rows will not be a pait of output select statement using the
inner join. This is the default type of join. Hence, it is optional to use INNER keyword.

The syntax of INNER JOIN is as following,

SELECT tablel.columnl, table2.column?...
FROM tablel

INNER JOIN table2

ON tablel.common_field =table2.common field;

Example :

SELECT CUSTOMER.NAME, ORDER.PRODUCT FROM CUSTOMER INNER JOIN ORDER
ON CUSTOMER.CUST NO=ORDER.CUST NO;

The above given query will produce the following result,

NAME PRODUCT
STEPHEN KEYBOARD
ELON PRINTER
ELON SCANNER

The LEFT OUTER JOIN :

The LEFT OUTER JOIN returns all the rows from the first table (CUSTOMER), even if there are no
matches in the second table (ORDER). If there are rows in CUSTOMER that do not have matches in
ORDER, those rows also will be displayed with NULL values.

Example :

SELECT CUSTOMER.NAME, ORDER.PRODUCT
FROM CUSTOMER LEFT OUTER JOIN ORDER
ON CUSTOMER.CUST NO=ORDER.CUST NO;

The above given query will produce the following result,
NAME PRODUCT

STEPHEN KEYBOARD
JOHN [null]

ELON PRINTER
ELON SCANNER
STEVE [null]

The RIGHT OUTER JOIN :

The RIGHT OUTER JOIN retumns all the rows from the second table (ORDER), even if there are no
matches in the first table(CUSTOMER). If there are rows in ORDER that do not have matches in

CUSTOMER, those rows also will be displayed.

Example :

SELECT CUSTOMER.NAME, ORDER.PRODUCT
FROM CUSTOMER RIGHT OUTER JOIN ORDER

ON CUSTOMER.CUST NO=ORDER.CUST NO;

The above given query will produce the following result,

NAME PRODUCT

STEPHEN KEYBOARD

ELON PRINTER

ELON SCANNER
The FULL OUTER JOIN :

The FULL OUTER JOIN keyword retwrns all records when there is a match in the first table

(CUSTOMER) or second table (ORDER) records.

SELECT CUSTOMER.NAME, ORDER.ORDER NO, ORDER.PRODUCT

FROM CUSTOMER FULL OUTER JOIN ORDER
ON CUSTOMER.CUST NO=ORDER.CUST NO;

The above given query will produce the following result as,

Subqueries :

A query within another query is known as subquery. Subquery is specified in the where clause of
another query which is known as outer query or main query. The subquery executes first, and its output is
used to complete the query condition for the main or outer query. Subquery must be enclosed in parentheses
and always be on the right side of the comparison operator.

NAME ORDER NO PRODUCT
STEPHEN 220 KEYBOARD
JOHN [null] [null]

ELON 365 PRINTER
ELON 512 SCANNER
STEVE [null] [null]

The Subquery can be place in a number of SQL clauses such as WHERE clause, HAVING clause,
FROM clause. It can be used with SELECT, UPDATE, INSERT, DELETE statements along equality
operator or comparison operator including =, >, =, <= and Like operator.

Self-Join:-

A self-join is used to join a table to itself. A self-join simplifies the task of nested queries in which
the inner and outer queries refer to the same table. You should use a self5join only when you need to
retrieve data that joins rows in the table with the rows in the reference of same table twice within th’

e same query, you must provide an alias to at least one of the instances of the table.

Syntax
SELECT column_name(s)

FROM tablel T1, tablel T2
WHERE condition;

T1 and T2 are different table aliases for the same table.

Consider the following table

empid [ename | emp_mgr id

1 RAJAN 2
2 SUSHIL | NULL
3 SHOBHA | 5
4 RADHA |2
5 MILAN NULL

By using self join we have to display empname and their manager name, by using above syntax
of self join, the SQL is as follows

SELECT E1. ENAME AS "Manager Name" ,E2.ENAME AS "Emp Name"
FROM EMPSELF E1 JOIN EMPSELF E2
ON E1.EMPID=E2.EMP MGR _ID

The output is

Manager | Emp
Name Name
SUSHIL [RAJAN
SUSHIL [RADHA
MILAN | SHOBHA

Subqueries as Constants :

A subquery, also called a subselect, can replace a constant in a query. While constant never changes, a

Example : Consider the following tables.

subquery's value are computed every time the query is executed.

CUSTOMER :
CUST_NO NAME CITY
1 STEPHEN BOSTON
2 JOHN HISTON
3 ELON TEXAS
4 STEVE TEXAS

If you want to find the customer who are not in the same city as “ELON’ You can place his city in the

query using the constant string ‘TEXAS’ like,

SELECT name, city FROM CUSTOMER
WHERE city !='TEXAS',

But if ‘ELON’ moves to another city then you have to change the query. Hence using the column city

is more reliable.

SELECT name,city FROM CUSTOMER
WHERE city '= (SELECT city FROM CUSTOMER WHERE name=ELON"),

‘Whenever computed value is needed you can use sub queries. Each subquery has its own FROM and
WHERE clauses also. It can also have its own aggregate, GROUP BY, and HAVING clauses. A subquery
always returns the value to its outer. Using this approach comparisons can be done effectively, that would
be difficult if the subquery's clauses had to be combined with those of the outer query.

Subqueries as Correlated Values :
In a comrelated subquery, a table in the inner SELECT will be joined to a table in the outer SELECT,

thereby defining a relationship between these two queries. This is a powerful group of subqueries. A
correlated subquery is evaluated once for each row processed by the parent statement.

Syntax of correlated query,

SELECT columnA from tablel T1
WHERE T1.columnB =(SELECT T2.columnB FROM table2 T2
WHERE T2.columnC = T1.columnC);

Example : Consider following two tables

CUSTOMER
CUST NO | NAME CITY
1 STEPHEN BOSTON
2 JOHN HISTON

3 ELON TEXAS

4 STEVE TEXAS
ORDER
ORDER NO | PRODUCT CUST _NO QTY
220 KEYBOARD 1 5
365 PRINTER 3 4
512 SCANNER 3 2
220 SCANNER 1 5

The following correlated query display the values of CUST NO, PRODUCT and QTY of'the customer
who lives in Boston.

SELECT PRODUCT,QTY FROM ORDER
WHERE ORDER.CUST NO=(SELECT CUST NO FROM CUSTOMER WHERE
CITY=BOSTON'),

Result :
PRODUCT QTY
KEYBOARD 5
SCANNER 5

Subqueries as Lists of Values :

The subqueries in above example returned one row of data to the outer query. If any of the previous
subqueries retuwrned more than one row, an error would be generated: ERROR: More than one tuple returned
by a subselect used as an expression. However, it is possible to have subquery which return multiple rows.

The comparison operators like =, <, > expect a single value on the left and on the right.

For example, equality expects one value on the left of the equals sign (=) and one on the right.

For example col1=5. There are two special comparisons, IN and NOT IN which allow multiple values
to appear on the right side. For example, the condition quantity IN (2, 4, 5) compares col against three
values.

If quantity equals any of the three values, the comparison will return true and output the row. The
condition quantity NOT IN (2, 4, 5) will return true if quantity does not equal any of the three values. You
can specify any number of values on the right side of an IN or NOT IN comparison. More importantly, a
subquery (instead of a constant) can be placed on the right side. It can then return multiple rows. The
subquery is evaluated, and its output used likes a list of constant values.

NOT IN and Subqueries with NULL Values :

‘When the value retirn by NOT IN subquery is NULL, the NOT IN comparison always retuins false.
NOT IN requires the outer column to be not equal to every value returned by the subquery. Because all
comparisons with NULL return false even inequality comparisons NOT IN returns false.

We can prevent NULL values from reaching the outer query by adding IS NOT NULL to the subquery.

For example if any NULL cust no value exists the query would return no rows. We can prevent this
situation by adding WHERE cust no IS NOT NULL to the subquery. The subquery using IN does not have
the problem with NULLs.

Examples :

SELECT DISTINCT customer] .name
FROM customer], orderl
WHERE customerl.cust no—=orderl.cust no and customerl.city="BOSTON,

SELECT name
FROM customerl
WHERE cust no NOT IN (SELECT cust no FROM order] WHERE product=SCANNER");

SELECT name
FROM customerl
WHERE cust no IN (SELECT cust no FROM order] WHERE product="SCANNER");

Subqueries Returning Multiple Columns :

Generally most subqueries return a single column to the outer query, but you can use subqueries for
returning more than one column.

For example, SELECT CUST NO, NAME FROM CUSTOMER WHERE (1, 5) IN (SELECT
CUST_NO, QTY FROM ORDER)

This query returns true if the subquery returns a row with 1 in the first column and 5 in the second
column. The condition WHERE (outercoll, outercol2) IN (SELECT coll, col2 FROM subtable) performs
equality comparisons between the outer query's two columns and the subquery's two columns. Multiple
columns in the outer query can then be compared with multiple columns in the subquery. While using such
type of subqueries , the number of values given on the left of IN or NOT IN must be the same as the number
of columns returned by the subquery.

MERGE statement :

The MERGE statement in PostgreSQL is used to merge data from a source table to a target table based
on a specified condition. The MERGE command in SQL is a combination of three SQL statements:
INSERT, UPDATE and DELETE. Basically merge statement is used if you want to make changes in the
required target table with the help of provided source table which consists of latest details.

Consider the example, if you have two tables PRODUCT table which contains the current details of the
products like PID, NAME, and PRICE and NEW PRODUCT table that contains the new details of the
products ID, NAME, and PRICE and you have to update the details of the products in the PRODUCT table
as per the NEW PRODUCT.

PRODUCT :

ID NAME PRICE
101 KEYBOARD 400
102 MOUSE 150

103 PENDRIVE 600

NEW_PRODUCT :

ID NAME PRICE
101 KEYBOARD 400
102 MOUSE 200
104 LED PEN 100

Syntax :

MERGE INTO table [[AS] alias |
USING source-query
ON join_condition
[when clause [...]]
/* Where when_clause is */
{ WHEN MATCHED [AND condition | THEN { merge update | DELETE }
WHEN NOT MATCHED [AND condition | THEN { me1ge insert | DO NOTHING } }
/* Where merge updateis */
UPDATE SET { column = { expression | DEFAULT } |
(column [, ...]) =({ expression |[DEFAULT } [, ...]) } [, ---]
/* Where merge insertis */
INSERT [(column [, ...])] { VALUES ({ expression | DEFAULT } [, ...]) | DEFAULT VALUES }

Example :

MERGE INTO PRODUCT USING NEW_PRODUCT
ON PRODUCT.ID=NEW_PRODUCT.ID
WHEN MATCHED THEN UPDATE SET PRICE=NEW PRODUCT.PRICE

WHEN NOT MATCHED THEN INSERT VALUES
(NEW_PRODUCT.ID,NEW PRODUCT.NAMENEW PRODUCT PRICE);

Set Operations :

1. UNION :

The PostgreSQL UNION operator combines the results of two or more SELECT statements without
returning any duplicate rows.

To use UNION, each SELECT must have the same number of columns selected, the same number of
column expressions, the same data type, and have them in the same order but they do not have to be the
same length.

Syntax :

SELECT columnl [, column?2]
FROM tablel [, table2]
[WHERE condition]

UNION

SELECT columnl [, column?2]
FROM tablel [, table2]

[WHERE condition]
Example
Consider two tables DEPT and EMP
DEPT
DEPT NO DEPT NAME
1 IT
2 FINANCE
3 HR
4 SALES
EMP
EMP ID NAME DEPT NO SALARY
101 RAM PATIL 1 65000
102 SHITAL VARMA 1 70000
103 HEMANT RAO 2 45000
104 SUNDAR REDDY 3 80000
105 NISHANT GOY AL 2 50000
106 VIREN GHOSH 3 57000
107 MANIJIT SINGH 3 40000

SELECT DEPT NO FROM DEPT
UNION
SELECT DEPT NO FROM EMP ;

This will return output as,

DEPT_NO
2

—| W] =

2. EXCEPT :

The EXCEPT operator returns distinct rows from the first (left) query that are not in the output of the
second (right) query.

Touse EXCEPT, operator the number of columns and their orders must be the same in the two queries
also the data types of the respective columns must be compatible.

Syntax :

SELECT columnl [, column?2]
FROM tablel [, table2]

[WHERE condition]

EXCEPT

SELECT columnl [, column?2]
FROM tablel [, table2]
[WHERE condition]

Example

SELECT DEPT NO FROM DEPT
EXCEPT
SELECT DEPT NO FROM EMP ;

This will return output as,
DEPT NO
4

3. INTERSECT :

The INTERSECT operator retirns the common data among both the tables in a single result set. As
like UNION and EXCEPT to use INTERSECT operator the number of columns and their orders must be
the same in the two queries also the data types of the respective columns must be compatible.

Syntax :

SELECT columnl [, column?2]
FROM tablel [, table2]
[WHERE condition]

INTERSECT

SELECT columnl [, column?2]
FROM tablel [, table2]
[WHERE condition]

Example

SELECT DEPT NO FROM DEPT
INTERSECT
SELECT DEPT NO FROM EMP ;

his will return output as,
DEPT NO
3
2
1
Clauses -ANY, ALL, and EXISTS Clauses
4. ANY :
The ANY operator returns true if any of the subquery values meet the condition To select any tuples of
SELECT STATEMENT the ANY operator is used. Also it is used to compare a value to each value in a
list or results from a query and evaluates to true if the result of an inner query contains at least one row.

Always the comparison operators like <,>,<=>==1is followed by ANY operator .Y ou can use any with
SELECT, WHERE and HAVING statement.
Syntax :

SELECT column_name(s)

FROM table name

WHERE column_name operator ANY

(SELECT column name FROM table name WHERE condition);

Example :
Consider the above EMP table. The below query retumn the records of employee whose salary is greater

than any of the employee’s salary from department 2.

SELECT EMP NAME, SALARY

FROM EMP
WHERE SALARY > Any (SELECT SALARY

FROM EMP
WHERE DEPT NO = 2);

5.ALL:
The ALL operator retuns true if all of the subquery values meet the condition. To select all tuples of

SELECT STATEMENT the ALL operator is used. Also it is used to compare a value to every value in
another value list or result from a subquery.

The ALL operator retirns TRUE when all of the subqueries values meet the condition. The comparison
operators like <,>,<=>== are used with ALL operator .You can use ALL with SELECT, WHERE and
HAVING statement.

Syntax :

SELECT column_name(s)

FROM table name

WHERE column name operator ALL

(SELECT column name FROM table name WHERE condition);

Example :
Consider the above EMP table. The below query return the records of employee whose salary is greater

than all of the employee’s salary from department 2.

SELECT EMP_NAME, SALARY
FROM EMP

WHERE SALARY > ALL (SELECT SALARY
FROM EMP

WHERE DEPT NO = 2);

6. EXISTS :

The EXISTS condition in Postgre SQL is used to check whether the result of a correlated nested query
contains any tuples or not. The result of EXISTS is always a Boolean type of vale(True or False). The
EXISTS operator canbe usedin a SELECT, UPDATE, INSERT or DELETE statement to specify existence
condition.

Syntax :

SELECT column_name(s)
FROM table name
WHERE EXISTS
(SELECT column name(s)
FROM table name
WHERE condition);

Example :
Consider the above EMP and DEPT table. The following query returns the names of department in
which at least one employee exist.

Select dept name

FROM dept

WHERE EXISTS (SELECT * FROM emp
WHERE emp.dept_no=dept.dept no);

Unit - S TRANSACTION COMMANDS , INDEX AND SEQUENCE [L: 5M: 10]

e Transaction commands-Commit, Rollback e Indexing -Creating an Index, Unique Indexes o
Sequences- Creating Sequence, using nextval(), currval() and setval()

e Transaction Commands (Commit, Rollback)

A transaction 1s a unit of work that is performed against a database. Transactions are units or
sequences of work accomplished in a logical order, whether in a manual fashion by a user or
automatically by some sort of a database program.

A transaction is the propagation of one or more changes to the database. For example, Creating,
Updating and Deleting Record from table is the transaction on table. , then you are performing
transaction on the table. It is important to control transactions to ensure data integrity and to
handle database errors.

Transaction Control

The following commands are used to control transactions —

BEGIN TRANSACTION — To start a transaction.

COMMIT - To save the changes, alternatively you can use END TRANSACTION command.
ROLLBACK — To rollback the changes.

Transactional control commands are only used with the DML commands INSERT, UPDATE
and DELETE only. They cannot be used while creating tables or dropping them because these
operations are automatically committed in the database.

The BEGIN TRANSACTION Command

Transactions can be started using BEGIN TRANSACTION or simply BEGIN command. Such
transactions usually persist until the next COMMIT or ROLLBACK command is encountered.
But a transaction will also ROLLBACK if the database is closed or if an error occurs.

The following is the simple syntax to start a transaction —
BEGIN;,

or

BEGIN TRANSACTION;

The COMMIT Command

The COMMIT command is the transactional command used to save changes invoked by a
transaction to the database.

The COMMIT command saves all transactions to the database since the last COMMIT or
ROLLBACK command.

The syntax for COMMIT command is as follows —
COMMIT;

or

END TRANSACTION;

The ROLLBACK Command

The ROLLBACK command is the transactional command used to undo transactions that have
not already been saved to the database.

The ROLLBACK command can only be used to undo transactions since the last COMMIT or
ROLLBACK command was issued.

The syntax for ROLLBACK command is as follows —
ROLLBACK;
Example

Consider the EMPLOYEE table 1s having the following records —

empid | ename designation salary
1 RAMA PATIL ANALYST 34500
2 NITIL DHANDE | PROGRAMMER [54000
3 SHIRISH ZALTE | DEVELOPER 46000

Now, let us start a transaction and delete records from the table having empid = 3 and finally we
use ROLLBACK command to undo all the changes.

BEGIN;
DELETE FROM EMPLOYEE WHERE empid = 3;
ROLLBACK,
If you will check EMPLOYEE table is still having the following records —
empid | ename designation salary
1 RAMA PATIL ANALYST 34500
2 NITIL DHANDE | PROGRAMMER [54000
3 SHIRISH ZALTE | DEVELOPER 46000

Now, let us start another transaction and delete records from the table having empid = 3 and
finally we use COMMIT command to commit all the changes.

BEGIN;

DELETE FROM COMPANY WHERE emipd = 3;

COMMIT;

If you will check the EMPLOYEE table, it still has the following records —

empid | ename designation salary
1 RAMA PATIL ANALYSY 34500
2 NITIL DHANDE | PROGRAMMER [54000

Practically, combining many PostgreSQL queries into a group and you will execute all of them
together as a part of a transaction.

e INDEXING

Indexes are a common way to enhance database performance. Anindex allows the database
server to find and retrieve specific rows much faster than it could do without an index. But
indexes also add overhead to the database system as a whole, so they should be used sensibly.

Indexes are special lookup tables that the database search engine can use to speed up data
retrieval. Simply put, an index 1s a pointer to data in a table. An index in a database is very similar
to an index in the back of a book.

For example, 1f you want to reference all pages in a book that discusses a certain topic, you have
to first refer to the index, which lists all topics alphabetically and then refer to one or more specific
page numbers.

An index helps to speed up SELECT queries and WHERE clauses; however, it slows down data
input, with UPDATE and INSERT statements. Indexes can be created or dropped with no effect
on the data.

Creating an INDEX

Creating anindex involves the CREATE INDEX statement, which allows you to name the index,
to specify the table and which column or columns to index, and to indicate whether the index is
in ascending or descending order.

Indexes can also be unique, similar to the UNIQUE constraint, in that the index prevents duplicate
enfries in the column or combination of columns on which there's an index.

The CREATE INDEX Command

The basic syntax of CREATE INDEX is as follows —
CREATE INDEX index name ON table name;

Index Types

PostgreSQL provides several index types: B-tree, Hash, GiST, SP-GiST and GIN. Each Index
type uses a different algorithm that 1s best swted to different types of queries. By default, the
CREATE INDEX command creates B-tree indexes, which fit the most common situations.

Single-Column Indexes

A single-column index is one that is created based on only one table column. The basic syntax is
as follows —

CREATE INDEX index_name
ON table_name (column_name);

Example:

Create simple table and insert records , more records can generates better result so at least insert
10 to 15 records,

CREATE TABLE EMPLOYEE
(EMPID INTEGER PRIMARY KEY,
ENAME VARCHAR(20),
DESIGNATION VARCHAR(20),
SALARY MONEY,

PHONENO INTEGER)

INSERT INTO EMPLOYEE

VALUES(156,, RAMDAS PATIL'PROGRAMMER',56000,561234),
(90,'PRAJKTA BHMRE''ANALYST',67000,876541),
(542,'SUJIT TAMBE',SOFTWARE ENGINEER',123000,967890),
(123,'VINAY CHAUDHARI','PROGRAMMER',54390,784996)

Now , search the record from employee table , as if we search phoneno=876541 as
SELECT *

FROM EMPLOYEE
WHERE PHONENO=876541

Successfully run. Total query runtime: 429 msec. 1 rows affected.

Create Index on the Employee table on Phoneno column as

CREATE INDEX empphone index
ON EMPLOYEE(PHONENO)

Search the same record , it requires less time as compare non-index table

SELECT *
FROM EMPLOYEE
WHERE PHONENO=876541

Successfully run. Total query runtime: 76 msec. 1 rows affected.

Multicolumn Indexes

A multicolumn index 1s defined on more than one column of a table. The basic syntax is as follows

CREATE INDEX index name
ON table name (columnl name, column2 name);

CREATE INDEX empphid index
ON EMPLOYEE(PHONENO,EMPID)

Whether to create a single-column index or a multicolumn index, take into consideration the
column(s) that you may use very frequently in a query's WHERE clause as filter conditions.

Should there be only one column used, a single-column index should be the choice. Should there
be two or more columns that are frequently used in the WHERE clause as filters, the multicolumn
index would be the best choice.

Unique Indexes

Unique indexes are used not only for performance, but also for data integrity. A unique index
does not allow any duplicate values to be inserted into the table. The basic syntax is as follows —

CREATE UNIQUE INDEX index name
on table name (column name);

CREATE TABLE ITEM
(ITEMNO INT,

INAME VARCHAR(20),
RATE MONEY,
DTOFPURCHASE DATE,
QUANTITY INT)

INSERT INTO ITEM
VALUES(122,'CHAIR',2500,'12-SEP-2020',2)

INSERT INTO ITEM
VALUES(122,' TABLE',8500,'22-SEP-2020',2)

ERROR: duplicate key value violates unique constraint "uind" DETAIL: Key (itemno)=(122)
already exists. SQL state: 23505

e Sequences- Creating Sequence, using nextval(), currval() and setval()

By definmition, a sequence 1s an ordered list of integers. The orders of numbers in the sequence
are important. For example, {1,2,3,4,5} and {5.,4,3,2.1} are entirely different sequences.

A sequence in PostgreSQL i1s a user-defined schema-bound object that generates a sequence of
integers based on a specified specification.

To create a sequence in PostgreSQL, you use the CREATE SEQUENCE statement.
Introduction to PostgreSQL CREATE SEQUENCE statement
The following illustrates the syntax of the CREATE SEQUENCE statement:
CREATE SEQUENCE [IF NOT EXISTS | sequence name

[AS { SMALLINT | INT | BIGINT }]

[INCREMENT [BY] increment |

[MINVALUE minvalue | NO MINVALUE |

[MAXVALUE maxvalue | NO MAXVALUE |

[START [WITH] start |

[CACHE cache |

[[NO]CYCLE]

[OWNED BY { table name.column name | NONE }]

sequence_name
sequence_name

Specify the name of the sequence after the CREATE SEQUENCE clause. The IF NOT

EXISTS conditionally creates a new sequence only if it does not exist.

The sequence name must be distinct from any other sequences, tables, indexes, views, or foreign
tables in the same schema.

[AS { SMALLINT | INT | BIGINT } |

Specify the data type of the sequence. The valid data type is SMALLINT, INT, and BIGINT.
The default data type is BIGINT if you skip it.
The data type of the sequence which determines the sequence’s minimum and maximum values.

[INCREMENT [BY] increment |

The increment specifies which value to be added to the current sequence value to create new
value.

A positive number will make an ascending sequence while a negative number will form a
descending sequence.

The default increment value 1s 1.

[MINVALUE minvalue | NO MINVALUE |
[MAXVALUE maxvalue | NO MAXVALUE |

Define the minimum value and maximum value of the sequence. If youuse NO

MINVALUEand NO MAXVALUE, the sequence will use the default value.

For an ascending sequence, the default maximum value 1s the maximum value of the data type of
the sequence and the default minimum value is 1.

In case of a descending sequence, the default maximum value is -1 and the default minimum
value 1s the minimum value of the data type of the sequence.

[START [WITH] start |

The START clause specifies the starting value of the sequence.
The default starting value is minvalue for ascending sequences and maxvalue for descending
ones.

cache

The CACHE determines how many sequence numbers are preallocated and stored in memory for
faster access. One value can be generated at a time.
By default, the sequence generates one value at a time 1.e., no cache.

CYCLE |NO CYCLE

The CYCLE allows you to restart the value if the limit 1s reached. The next number will be the
minimum value for the ascending sequence and maximum value for the descending sequence.
If youuse NO CYCLE, when the limit is reached, attempting to get the next value will result in
an error.

The NO CYCLE 1is the default if you don’t explicitly specify CYCLE or NO CYCLE.

OWNED BY table name.column name

The OWNED BY clause allows you to associate the table column with the sequence so that
when you drop the column or table, PostgreSQL will automatically drop the associated sequence.
Note that when you use the SERIAL pseudo-type for a column of a table, behind the scenes,
PostgreSQL automatically creates a sequence associated with the column.

PostgreSQL CREATE SEQUENCE examples

Let’s take some examples of creating sequences to get a better understanding.

1) Creating an ascending sequence example

This statement uses the CREATE SEQUENCE statement to create a new ascending sequence
starting from 100 with an increment of 5:
CREATE SEQUENCE mysequence
INCREMENT 5
START 100;
Code language: SQL (Structured Query Language) (sql)
To get the next value from the sequence to you use the nextval() function:
SELECT nextval('mysequence');
Code language: SQL (Structured Query Language) (sql)
nextval
4 99 nt

1 100

NEXTVAL()
If you execute the statement again, you will get the next value from the sequence:

SELECT nextval('mysequence');
Code language: SQL (Structured Query Language) (sql)
nextval
4 digint

1 1

o
o

2) Creating a descending sequence example

The following statement creates a descending sequence from 3 to 1 with the cycle option:

CREATE SEQUENCE three
INCREMENT -1
MINVALUE 1
MAXVALUE 3

START 3

CYCLE;

When you execute the following statement multiple times, you will see the number starting from
3,2, 1 and back to 3, 2, 1 and so on:

SELECT NEXTVAL('three’)

3) Creating a sequence associated with a table column

First, create a new table named order details:

CREATE TABLE order details(
order i1d SERIAL,
item_id INT NOT NULL,
item_name VARCHAR NOT NULL,
price DEC(10,2) NOT NULL,
PRIMARY KEY(order id, item id)

);

Second, create a new sequence associated with the item 1d column of the order details table:
CREATE SEQUENCE ord itemid

START 1

INCREMENT 1

MINVALUE 1

OWNED BY order details.item id;

Third, insert three order line items into the order details table:
INSERT INTO

order details(order id, item id, item_name, price)
VALUES

(10, nextval('ord itemid"),' Hard Disk',3000),

(10, nextval('ord itemid'),'Pen Drive ',550),

(10, nextval('ord itemid"),' Speaker',250);

In this statement, we used the nextval() function to fetch item id value from
the order item 1d sequence.
Fourth, query data from the order details table:
SELECT
order id,
item id,
item name,
price
FROM
order details;

Explain Messages Notifications Data Output

arder_id itern_id r item_name price

4 [PElinteger # [PK] integer characler varying v nurmeric (10,2) £
1 10 1 | 1larg Disk 3000.00
10 2 Pen Drive S50.00
10 3 Speaker 250.00

Listing all sequences in a database

To list all sequences in the current database, you use the following query:

SELECT
relname sequence name
FROM
pg_class
WHERE
relkind ='S';
Code language: SQL (Structured Query Language) (sql)

CURRVALY()
Syntax:
Currval(sequence_name) — Display Current value of sequence

CREATE SEQUENCE incre
INCREMENT 1
MINVALUE 1
MAXVALUE 5

START 1

CeLE:

The above sequence generate 1,2,3,4,5 and again same cycle multiple times by following
command.

SELECT NEXTVAL(‘INCRE’)

At the time of execution of Nextval() , in between when we stop and want to display current
value , If sequence generates 1,2,3 only and stops then execute

SELECT CURRVAL(‘incre’)

Displays 3 , 1s the current value of sequence

Deleting sequences

If a sequence 1s associated with a table column, it will be automatically dropped once the table
column is removed or the table 1s dropped.

You can also remove a sequence manually using the DROP SEQUENCE statement:
DROP SEQUENCE [IF EXISTS] sequence name [, ...]
[CASCADE |RESTRICT |,

Unit— 6 - PL/PGSQL - SQL PROCEDURAL LANGUAGE [L:15M:20]

e Introduction to PL/PGSQL-Advantages of PL/PGSQL, structre of PL/PGSQL, basic
Statements and control structures ® Function -Creating functions, Removing functions e Cursors-
Creation of Cursors, Using Cursors, Looping e Triggers-Introduction, Triggers Vs constraints,
DML Triggers, DDL Triggers 7 Under e Error handling -Introduction Error Handling, RAISE
Statement

e Introduction of PostgreSQL PL/pgSQL

PL/pgSQL is a procedural programming language for the PostgreSQL database system.

PL/pgSQL allows you to extend the functionality of the PostgreSQL database server by creating
server objects with complex logic.

PL/pgSQL was designed to :

e Create user-defined functions, stored procedures, and triggers.
o Extend standard SQL by adding control structures such as if, case, and loop statements.
e Inherit all user-defined functions, operators, and types.

SQL 1s a query language that allows you to query data from the database easily. However,
PostgreSQL only can execute SQL statements individually.

It means that you have multiple statements, you need to execute them one by one like this:

First, send a query to the PostgreSQL database server.

Next, wait for it to process.

Then, process the result set.

After that, do some calculations.

Finally, send another query to the PostgreSQL database server and repeat this process.

This process incurs the interprocess commmunication and network overheads.
To resolve this issue, PostgreSQL uses PL/pgSQL.

PL/pgSQL wraps multiple statements in an object and store it on the PostgreSQL database
SEerver.

So instead of sending multiple statements to the server one by one, you can send one statement to
execute the object stored in the server. This allows you to:

¢ Reduce the number of round trips between the application and the PostgreSQL database
Server.
¢ Avoid transferring the immediate results between the application and the server.

¢ Advantages of using PL/pgSQL

1. Open Source DBMS

Only PostgreSQL provides enterprise-class performance and functions among curent Open
Source DBMS with no end of development possibilities. Also, PostgreSQL users can directly
participate in the community and post and share inconveniences and bugs.

2. Diverse Community

One of the characteristics of PostgreSQL is that there are a wide variety of communities. Regarding
PostgreSQL as Open Source DBMS, users themselves can develop modules and propose the
module to the community. The development possibility is superiorly high with collecting opinions
from its own global community organized with all different kinds of people. Collective
Intelligence, as some might call it, facilitates transmission of indigenous knowledge greatly within
the communities.

3. Function

SQL functions called “Store Procedure’ can be used for server environment. Also, we support
languages similar to PL/SQL in Oralcle such as PL/pgSQL, PL/Python, PL/Perl, C/C++, and
PL/R.

4. ACID and Transaction
PostgreSQL support ACID(Atomicity, Consistency, Isolation, Durability).
5. Diverse indexing techniques

PostgreSQL not only provides B+ tree index techniques, but various kinds of techniques such as
GIN(Generalized Inverted Index), and GiST(Generalized Search Tree), etc as well.

6. Flexible Full-text search

Full-text search is available when searching for strings with execution of vector operation and
string search.

7. Diverse kinds of replication

PostgreSQL supports a variety of replication methods such as Streaming Replication , Slony-I,
and cascading.

8. Diversified extension functions

PostgreSQL supports different kinds of techniques for geographic data storage such as PostGIS,
Key-Value Store, and DBLink.

e Structure of PL/pgSQL

PL/pgSQL is a block-structured language, therefore, a PL/pgSQL function or stored procedure 1s
organized into blocks.

The following illustrates the syntax of a complete block in PL/pgSQL:
[declare

declarations |
begin

statements;

end [label |,
Code language: PostgreSQL SQL dialect and PL/pgSQL (pgsql)
Let’s examine the block structure in more detail:

e Each block has two sections: declaration and body. The declaration section 1s optional
while the body section is required. A block is ended with a semicolon (;) after the END
keyword.

e A block may have an optional label located at the beginning and at the end. You use the
block label when you want to specify it in the EXIT statement of the block body or when
you want to qualify the names of variables declared in the block.

e The declaration section is where you declare all variables used within the body section.
Each statement in the declaration section is terminated with a semicolon (;).

e The body section 1s where you place the code. Each statement in the body section is also
terminated with a semicolon ().

¢ Basic Statement and Control Statement:
Variables and Constants

All variables, rows and records used in a block or its sub-blocks must be declared in the
declarations section of a block. The exception being the loop variable of a FOR loop iterating
over a range of integer values.

PL/pgSQL variables can have any SQL datatype, such as INTEGER, VARCHAR and CHAR.
All variables have as default value the SQL NULL value.

Here are some examples of vanable declarations:

user_1d INTEGER;

quantity NUMBER(S);

wrl VARCHAR;

Constants and Variables With Default Values

The declarations have the following syntax:

name [CONSTANT] type [NOT NULL] [{ DEFAULT | :=} value |;

The value of variables declared as CONSTANT cannot be changed. If NOT NULL i1s specified,
an assignment of a NULL value results in a runtime error. Since the default value of all variables
1s the SQL NULL value, all variables declared as NOT NULL must also have a default value
specified.

The default value is evaluated every time the function is called. So assigning 'now' to a variable
of type timestamp causes the variable to have the time of the actual function call, not when the
function was precompiled into its bytecode.

Examples:

quantity INTEGER = 35;

url varchar :="http://basponc.org";
u 1d CONSTANT INTEGER :=38;
Parameters Passed to Functions

Parameters passed to functions are named with the identifiers $1, $2, etc. Optionally, aliases can
be declared for the $n parameter names for increased readability. Some examples:

Attributes

Using the %TYPE and %ROWTYPE attributes, you can declare variables with the same
datatype or structure of another database item (e.g: a table field).

variable% TYPE

%TYPE provides the datatype of a variable or database column. You can use this to declare
variables that will hold database values. For example, let's say you have a column named emp 1id
in your employee table. To declare a variable with the same datatype as employee.emp id you
write:

emp 1d employee.emp 1d%TYPE;

By using %TYPE you don't need to know the datatype of the structure you are referencing, and
most important, if the datatype of the referenced item changes in the future (e.g: you change your
table definition of emp id to become a REAL), you won't need to change your function
definmtion.

table% ROWTYPE

%ROWTYPE provides the composite datatype corresponding to a whole row of the specified
table. table must be an existing table or view name of the database. The fields of the row are
accessed in the dot notation. Parameters to a function can be composite types (complete table
rows). In that case, the corresponding identifier $n will be a rowtype, and fields can be selected
from it, for example $1.user id.

Only the user-defined attributes of a table row are accessible in a rowtype variable, not OID or
other system attributes (because the row could be from a view). The fields of the rowtype inherit
the table's field sizes or precision for char() etc. data types.

DECLARE
emp_rec empoyee%ROWTYPE;
emp _1d employee.emp 1d%TYPE;
The RAISE NOTICE is the equivalent to these in Postgres PL/pgSQL

, as shown 1n the following anonymous block:

do $%
BEGIN
raise notice 'Hello World!";
END;
$3.

It prints:

NOTICE: Hello World!

Control Statement:

The if statement determines which statements to execute based on the result of a boolean
expression.

PL/pgSQL provides you with three forms of the if statements.
if then , if then else, if then elsif
PL/pgSQL if-then statement

The following illustrates the formats of the if statement:

if-then If-then-else If-then-elsif
if condition then if condition then if condition 1 then
statements; statements; statement 1.
end if; else elsif condition 2 then
alternative-statements; statement 2
END if;

elsif condition n then
statement n;

else
else-statement;

end if;

if statement executes statements if a condition is true. If the condition evaluates to false, the
control is passed to the next statement after the END i1f part.

The condition 1s a boolean expression that evaluates to true or false.

The statements can be one or more statements that will be executed if the condition is true. It can
be any valid statement, even another if statement.

When an if statement is placed inside another if statement, it 1s called a nested-if statement.

Example:

Program Description /Requirement

do $$ Item table contains
declare Item(Item id, Ttem name.rate,pdata)
selected item item%rowtype;
input_item_id item.item 1d%type :=2; Select * from Item
begin
item id | item name | rate purdate
select * from item 1 pen 230 5/10/2019
into selected item 2 box 300 5/10/2019
where item_1d =1nput_item_1d; 3 stapler 730 5/10/2019
4 paper-rim | 430 5/10/2019

if not found then
raise notice '"The 1tem % could not be

found’ After exection the pl/pgSQL following is the

input_item id; output
else NOTICE: The item_name is box DO

raise notice 'The item_name 1s %', Query returned successfully in 93 msec.
selected item.item name;
end if;
end $$

For Loop

The following illustrates the syntax of the for loop statement that loops through a range of
integers:

[<<label>>]

for loop_counter in [reverse | from.. to [by step | loop
statements

end loop [label |;

In this syntax:

First, the for loop creates an integer variable loop counter which is accessible inside the loop
only. By default, the for loop adds the step to the loop_counter after each iteration. However,
when you use the reverse option, the for loop subtracts the step from loop counter.

Second, the from and to are expressions that specify the lower and upper bound of the range. The
for loop evaluates these expressions before entering the loop.

Third, the step that follows the by keyword specifies the iteration step. It defaults to 1. The for
loop evaluates this step expression once only.

do $$ do $$

begin BEGIN

FOR 1IN 1..5 LOOP FOR 1IN REVERSE 5..1 LOOP
-- some expressions here -- some expressions here

RAISE NOTICE '11s %',1; RAISE NOTICE '11s %',1;

END LOOP; END LOOP;

end; $$ END; $$

Output: Output:

NOTICE: 1151 NOTICE: 1155

NOTICE: 1152 NOTICE: 11s 4

NOTICE: 1153 NOTICE: 1153

NOTICE: 11s 4 NOTICE: 1152

NOTICE: 1155 NOTICE: 1151

The following statement uses the for loop to display the titles of the top 10 longest films.

do
$$
declare
frecord;
begin
for fin select title, length
from film
order by length desc, title
limit 10
loop
raise notice '%(% mins), f title, flength;
end loop;
end;

$$
The WHILE loop

The WHILE loop is used to do the job repeatedly within the block of statements until the
condition mentioned becomes false. In this type of loop the condition mentioned will be
executed first before the statement block 1s executed.

Here is the syntax of the WHILE loop:
Syntax:

[<<label>>]
WHILE condition LOOP
statement;

[.]
END LOOP;

You can write a hello world function as a named PL/pgSQL block:

CREATE FUNCTION hello world()
RETURNS text AS
$$
DECLARE
output VARCHAR(20);
BEGIN
/* Query the string into a local variable. */

SELECT 'Hello World!" INTO output;

/* Return the output text variable. */
RETURN output;

END

$$ LANGUAGE plpgsql;

You can call it with the following:

SELECT hello world();
It prints:

hello world

Hello World!
(1 row)

e Function (Stored Procedures) -Creating functions, Removing functions

PostgreSQL functions, also known as Stored Procedures, allow you to carry out operations that
would normally take several queries and round trips in a single function within the database.
Functions allow database reuse as other applications can interact directly with your stored
procedures instead of a middle-tier or duplicating code.

Functions can be created in a language of your choice like SQL, PL/pgSQL, C, Python, etc.
Introduction to PL/pgSQL parameter modes

The parameter modes determine the behaviors of parameters. PL/pgSQL supports three
parameter modes: in, out, and inout. A parameter takes the in mode by default if you do not

explicitly specify it.

The following table illustrates the three parameter modes:

IN OUT INOUT
The default Explicitly specified Explicitly specified

Pass a value to function |Return a value from a function |Pass a value to a function and
return an updated value.

in parameters act like |out parameters act like inout parameters act like an
constants uninitialized variables initialized variables
Cannot be assigneda |Must assign a value Should be assigned a value

value

Syntax

The basic syntax to create a function is as follows —

CREATE [OR REPLACE] FUNCTION function name (arguments)
RETURNS return_datatype AS $variable name$
DECLARE
declaration;
[...]
BEGIN
< function body >

[.]

RETURN ({ variable name | value }
END;
LANGUAGE plpgsql;

Where,

function-name specifies the name of the function.
[OR REPLACE] option allows modifying an existing function.
The function must contain a return statement.

RETURN clause specifies that data type you are going to return from the function.

The return_datatype can be a base, composite, or domain type, or can reference the type
of a table column.

function-body contains the executable part.
The AS keyword 1s used for creating a standalone function.

pIpgsql 1s the name of the language that the function 1s implemented in. Here, we use this
option for PostgreSQL, it Can be SQL, C, internal, or the name of a user-defined

procedural language. For backward compatibility, the name can be enclosed by single
quotes.

Example

CREATE TABLE EMPLOYEE
(EMPID INTEGER,

ENAME TEXT,

DESIGNATION VARCHAR(20),
SALARY DECIMAL(12.2))

INSERT INTO EMPLOYEE
VALUES(1,,RAMA PATILANALYSY",34500),

(2,'NITIL DHANDE''PROGRAMMER',54000),
(3,)SHIRISH ZALTE''DEVELOPER',46000)

Example-1
CREATE OR REPLACE FUNCTION totalRecords()
RETURNS integer AS $total$
declare
total integer;
BEGIN
SELECT count(*) INTO total
FROM EMPLOYEE;
RETURN total;
END;
$total$ LANGUAGE plpgsql;

SELECT totalRecords()

Example-2
CREATE OR REPLACE FUNCTION increment(i integer) RETURNS integer AS $$
BEGIN
RETURN 1+ 1;
END;
$$ LANGUAGE plpgsql;

SELECT increment(4) --- Output: 5

Example-3

create or replace function swap(
nout X int,
inout y int

)

language plpgsql

as $$

begin

select X,y into y,x;
end; $$;

select swap(20,30) -- output (30,20)

e Trigger

What are Postgresql Triggers?

A PostgreSQL trigger 1s a function that is triggered automatically when a database event occurs
on a database object. For example, a table.

Examples of database events that can activate a trigger include INSERT, UPDATE, DELETE,
etc. Moreover, when you create a trigger for a table, the trigger will be dropped automatically
when that To create a new trigger in Postgre SQL, you follow these steps:

e First, create a trigger function using CREATE FUNCTION statement.

e Second, bind the trigger function to a table by using CREATE TRIGGER statement.
table 1s deleted.

Create trigger function syntax

A trigger function is similar to a regular user-defined function. However, a trigger function does
not take any arguments and has a return value with the type trigger.

The following illustrates the syntax of creating trigger function:

CREATE FUNCTION trigger function()
RETURNS TRIGGER
LANGUAGE PLPGSQL

AS $$

BEGIN
-- trigger logic

END;

$$

Notice that you can create a trigger function using any languages supported by PostgreSQL. In
this tutorial, we will use PL/pgSQL.

A trigger function receives data about its calling environment through a special structure called
TriggerData which contains a set of local variables.

For example, OLD and NEW represent the states of the row in the table before or after the
triggering event.

Once you define a trigger function, you can bind it to one or more trigger events such as
INSERT, UPDATE, and DELETE. The CREATE TRIGGER statement creates a new trigger.
The following illustrates the basic syntax of the CREATE TRIGGER statement:

CREATE TRIGGER

CREATE TRIGGER trigger name
{BEFORE | AFTER} { event }
ON table name
[FOR [EACH] { ROW | STATEMENT }]
EXECUTE PROCEDURE trigger function

In this syntax we must go through following steps:

1. Specify the name of the trigger after the TRIGGER keywords.

Specify the timing that cause the trigger to fire. It can be BEFORE or AFTER an event

OCCurs.

3. Specify the event that invokes the trigger. The event can be INSERT , DELETE,
UPDATE or TRUNCATE.

4. Specify the name of the table associated with the trigger after the ON keyword.

5. Specify the type of triggers which can be:

Row-level trigger that 1s specified by the FOR EACH ROW clause.
Statement-level trigger that 1s specified by the FOR EACH STATEMENT clause.

A row-level trigger 1s fired for each row while a statement-level trigger 1s fired for each
transaction.

Example:
In the following table we insert information of the employees.

CREATE TABLE employees(
id INT GENERATED ALWAYS AS IDENTITY,
first name VARCHAR(40) NOT NULL,
last name VARCHAR(40) NOT NULL,
PRIMARY KEY(id)

);

Following table is created for storing updated value of last name of employee .

CREATE TABLE employee change (
1id INT GENERATED ALWAYS AS IDENTITY,
employee 1d INT NOT NULL,
last name VARCHAR(40) NOT NULL,
changed on TIMESTAMP(6) NOT NULL

);

CREATE OR REPLACE FUNCTION last name changes()

RETURNS TRIGGER

LANGUAGE PLPGSQL

AS
$$
BEGIN

IF NEW last name <> OLD.last name THEN
INSERT INTO employee change(employee id,last name,changed on)

VALUES(OLD.id,OLD last name,now());
END IF;
RETURN NEW;
END;
$$

The OLD represents the row before update while the NEW represents the new row that will be
updated. The OLD last name returns the last name before the update and the NEW .last name
returns the new last name.

Creating Trigger

CREATE TRIGGER last name changes
BEFORE UPDATE

ON employees

FOR EACH ROW

EXECUTE PROCEDURE last name changes();

Insert Values in the Employees table
INSERT INTO employees(first name,last name)
values('Manish','Nimbhore'),

(‘'Rahul','Borse'),
('Sanjay', Tripathi');

select * from employees

id first name | last name
1 Manish Nimbhore
3 Sanjay Tripathi

2 Rahul Borse

Now, update the last name of any employee

UPDATE employees
SET last name='Chandole'
WHERE id=2;

After update , the change will occur in both of the tables, ‘Borse’ replaces by “Chandole’

select * from employees

1d

first name

last name

1

Manish

Nimbhore

3 Sanjay Tripathi
2 Rahul Chandole

Updated employee value stored in employee change table
select * from employee change

id employee_last_name changed_on
1 2 Borse 42:49.8

¢ (Cursor

A cursor is a temporary work area created in the system memory when a SQL statement is
executed. A cursor contains information on a select statement and the rows of data accessed
byit. ... A cursor can hold more than one row, but can process only one row at a time.

There are four steps in the lifecycle of a cursor:

Declare

The Declare step of a cursor 1s where you specify the name of the cursor and the SQL statement
that 1s used to populate it.

Put the CURSOR keyword followed by a list of comma-separated arguments (name datatype)
that defines parameters for the query. These arguments will be substituted by values when the
cursor is opened.

After that, you specify a query following the FOR keyword. You can use any valid SELECT
statement here.

The following example illustrates how to declare cursors:

declare
cursorname CURSOR FOR
SELECT ststement

Open

The next step 1s Open, which processes and runs the SQL statement that is mentioned in the
Declare section.

OPEN cursorname;

Fetch

The third step is Fetch, which reads a single row from the set of rows stored in the cursor and
stores this single row into another variable.

When you fetch the row, you can perform actions and logic on the data in the row. You can
modify other variables, run SQL commands, perform IF statements, and more.

The Fetch step 1s usually run on each row in the overall result.

FETCH cursomame INTO variablel ,variable2;

Close

Finally, once all of the results have been processed and the Fetch stage 1s finished, the Close step
will release the cursor from memory and allow you to continue with the application.

CREATE TABLE product (
id INT,
product_name VARCHAR(100),
product_category_id INT,

price INT

);

INSERT INTO product (id, product_name, product_category_id, price)
VALUES (1, 'Toaster', 1, 2000);

INSERT INTO product (id, product_name, product_category_id, price)
VALUES (2, 'TV"', 2, 9000);

INSERT INTO product (id, product_name, product_category_id, price)
VALUES (3, 'Couch’, 2, 4500);

INSERT INTO product (id, product_name, product_category_id, price)
VALUES (4, 'Fridge', 1, 8000);

INSERT INTO product (id, product_name, product_category_id, price)
VALUES (5, 'Kettle', 1, 2500);

INSERT INTO product (id, product_name, product_category_id, price)
VALUES (6, 'Microwave', 1, 4000);

CREATE OR REPLACE FUNCTION t_cursor() RETURNS text
language plpgsql AS $$
DECLARE
test_cursor CURSOR FOR
SELECT id, product_name, price
FROM product;
currentID INT;
currentProductName VARCHAR(100);
currentPrice INT;
BEGIN
OPEN test_cursor;
LOOP
FETCH test_cursor INTO currentID, currentProductName, currentPrice;
EXIT WHEN NOT FOUND:;
RAISENOTICE "% % (ID: %)', currentProductName, currentPrice, currentID;
END LOOP;
CLOSE test_cursor;
RETURN 'Done';
END $8;

SELECT * FROM t_cursor()

NOTICE: Toaster 2666 (ID: 1)
NOTICE: TV 9666 (ID: 2)
NOTICE: Couch 4560 (ID: 3)
NOTICE: Fridge 8000 (ID: 4)
NOTICE: Kettle 2566 (ID: 5)
NOTICE: Microwave 4600 (ID: 6)

The code for a cursor in PostgreSQL works a little differently to other
databases. Here's what the code is doing:

Create a function. We start by creating a function to contain the code
for our cursor. This is an easy way to get the cursor created and able to
call it.

Declare the cursor. We then declare the cursor, calling it test_cursor,
and defining the SELECT query that’s used.

Declare the variables to store the row data. \We declare three
variables here (currentlD, currentProductName, and currentPrice) to
store the row data. This could be stored in a single variable with a type
that matches the table row, as an alternative.

Begin the execution code. The BEGIN statement starts the code
execution.

Open the cursor. The next step is to open the cursor, which runs the
SELECT statement.

Begin the loop. This will start a loop and execute all code between here
and the END LOOP statement, until it exits.

Fetch a row of data into the variables. The FETCH command will get
the first row of data from test_cursor and place the values into the three
variables mentioned. For each loop, it will get the next row.

Exit the loop when no row is found. If no row is found, then the loop
exits. This is to ensure the loop does not run indefinitely.

Output the data using RAISE NOTICE. In PostgreSQL, you can use
the RAISE NOTICE command to output a message to the output panel.
The % symbols indicate placeholders for variables, and there are three
which match the number of variables mentioned.

End the loop. The END LOOP command will end the loop code and
rerun the loop.

Close the cursor. The cursor will be closed and memory released to the
application.

Return a text value. Because a text value needs to be returned from the
function we return one here.

End the function. This is done by using the END statement.

Call the function to run it. Finally, we call the function by running it
inside a SELECT command to see the outpuit.

Example 2:

CREATE OR REPLACE FUNCTION e _cursor() RETURNS text
language plpgsql AS $$
DECLARE

cur_emp CURSOR FOR

SELECT empid,salary FROM employee
WHERE salary > 20000,
eid int;
esal int;

BEGIN
OPEN cur_emp;
LOOP
FETCH cur_emp INTO EID,ESAL;
EXIT WHEN NOT FOUND:;
RAISE NOTICE '% %' eid,esal,
END LOOP;
CLOSE cur_emp;
RETURN 'OK";
END $$;

select * from e cursor()

Output:

NOTICE: 1 34500
NOTICE: 2 54000
NOTICE: 3 46000

¢ Error handling -Introduction Error Handling, RAISE Statement

When an error occurs in a block, PostgreSQL will abort the execution of the block and also the
surrounding transaction.

To recover from the error, you can use the exception clause in the begin...end block.
The following illustrates the syntax of the exception clause:

<<label>>
declare
begin
statements;
exception
when condition [or condition...] then
handle exception;
[when condition [or condition...] then
handle exception;]
[when others then
handle other exceptions;

]

end;

How 1t works.

1. When an error occurs between the begin and exception, PL/pgSQL stops the execution
and passes the control to the exception list.

2. PL/pgSQL searches for the first condition that matches the occurring error.

3. If there is a match, the corresponding handle exception statements will execute.
PL/pgSQL passes the control to the statement after the end keyword.

4. If no match found, the error propagates out and can be caught by the exception clause of
the enclosing block. In case there 1s no enclosing block with the exception clause,

PL/pgSQL will abort the processing.

The condition names can be no_data_found in case of a select statement return no rows or
too_many_rows if the select statement returns more than one row. For a complete list of condition

names on the PostgreSQL website.

1) Handling no data found exception example

The following example issues an error because the Item with 1d 2 does not exist.

Error occurs without Exception

Error occurs with exception

Do
$$
declare
rec record;
e item_id int = §;
begin
-- select a item
select item_id, item_name
into strict rec
from item
where item_id = e_item_id;
end;
$$

language plpgsql;

Do
$$
declare
rec record;
e item_id int = 8;
begin
-- select a item
select item_id, item_name
into strict rec
from item
where item_id = e_item_id;

exception
when no_data_found then
raise exception 'item % not
found', e item_id;
end;

$$
language plpgsql;

ERROR: query returned no rows CONTEXT:
PL/pgSQL function inline_code_block line 7
at SQL statement SQL state: P@e©2

ERROR: item 8 not found CONTEXT: PL/pgSQL
function inline_code_block line 14 at
RAISE SQL state: PBGO1

2) Handling too_many rows exception example

The following example illustrates how to handle the too_many rows exception:

do
$$
declare
rec record,
begin
-- select film
select item _1d, item name
into strict rec
from item
where item name LIKE 'M%'",
exception
when too_many rows then
raise exception 'Search query returns too many rows';
end;
$$
language plpgsql;
Output:

ERROR: Search query returns too many rows CONTEXT: PL/pgSQL
function inline_code_block line 13 at RAISE SQL state: P@eol

In this example, the too_many rows exception occurs because the select into statement returns
more than one row while it is supposed to return one row.

3) SQLSTATE codes
As per above discussed in various example of Exceptions in PostgreSQL , we used

No data found and too many rows named exceptions. We can use SQLSTATE codes fro
named exceptions. The list is very long but for example some codes are as follows.

Class PO — PL/pgSQL Error
PO000 PLPGSQL ERROR plpgsql _error
PO0O01 RAISE EXCEPTION raise_exception
P0002 NO DATA FOUND no_data_found
PO003 TOO MANY ROWS too_many_rows

https://docstore.mik.ua/manuals/sql/postgresql-8.2.6/errcodes-appendix.html

