
 

 

Unit-4 Intermediate Code generation 

1. What is intermediate code? 

Ans: During the translation of a source program into the object code for a target machine, a 
compiler may generate a middle-level language code, which is known as intermediate code or 
intermediate text. The complexity of this code lies between the source language code and the 
object code. The intermediate code can be represented in the form of postfix notation, syntax tree, 
directed acyclic graph (DAG), three-address code, quadruples, and triples. 

 

2. Write down the benefits of using an intermediate code generation over direct code 
generation? 

Ans: The benefits of using an intermediate code over direct code generation are as follows: 

 Intermediate code is machine independent, which makes it easy to retarget the compiler 
to generate code for newer and different processors. 

  Intermediate code is nearer to the target machine as compared to the source language so 
it is easier to generate the object code. 

  The intermediate code allows the machine-independent optimization of the code. Several 
specialized techniques are used to optimize the intermediate code by the front end of the 
compiler. 

 Syntax-directed translation implements the intermediate code generation; thus, by 
augmenting the parser, it can be folded into the parsing. 

 

3. What are the two representations to express intermediate languages? 

Ans: The two representations of intermediate languages are categorized as follows: 

1. High-level intermediate representation: This representation is closer to the source program. 
Thus, it represents the high-level structure of a program, that is, it depicts the natural 
hierarchical structure of the source program. The examples of this representation are directed 
acyclic graphs (DAG) and syntax trees. This representation is suitable for static type 
checking task. The critical features of high-level representation are given as follows: 

 It retains the program structure as it is nearer to the source program. 

 It can be constructed easily from the source program. 

 It is not possible to break the source program to extract the levels of code sharing due to 
which the code optimization in this representation becomes a bit complex. 



 

 

2. Low-level intermediate representation: This representation is closer to the target machine 
where it represents the low-level structure of a program. It is appropriate for machine-
dependent tasks like register allocation and instruction selection. A typical example of this 
representation is three-address code. The critical features of low-level representation are 
given as follows: 

 It is near to the target machine. 

 It makes easier to generate the object code. 

 High effort is required by the source program to generate the low-level representation. 

 

 

 

Figure 4.1 A Sequence of Intermediate Representation 

 

4. What is postfix notation? Explain with example. 

Ans: Generally, we use infix notation to represent an arithmetic expression such as 
multiplication of two operands a and b. In infix notation, operator is always placed between the 
two operands, as a * b. But in postfix notation (also known as reverse polish or suffix notation), 
the operator is shifted to the right end, as ab*. In postfix notation, parentheses are not required 
because the position and the number of arguments of the operator allow only a single way of 
decoding the postfix expression. The postfix notation can be applied to k-ary operators for any 
k > 1. If β is a k-ary operator and a 1, a2,…, ak are any postfix expressions, then after applying β 
to the expressions, the expression in postfix notation is represented as a1 a2…akβ. 

For example, consider the following infix expressions and their corresponding postfix notations: 

o  (l + m) * n is an infix expression, the postfix notation will be l m + n *. 
o p * (q + r) is an infix expression, the postfix expression will be p q r + *. 
o (p - q) * (r + s) + (p - q) is an infix expression, the postfix expression will be p q - r s + * 

p q - +. 

5. Convert the following expression to the postfix notation and evaluate it. 

        P + (–Q + R * S) 

Ans: The postfix notation for the given expression is: 



 

 

        PQ - RS * ++ 

The step-by-step evaluation of this postfix expression is shown in Figure 4.2. 

 

Figure 4.2 Evaluation of Postfix Expression PQ – RS * + + 

The desired result is P +(–Q + R * S). 

7. What is a three-address code? What are its types? How it is implemented? 

Ans: A string of the form X: = Y OP Z, in which op is a binary operator, Y and Z are the 
addresses of the operands, and X is the address of the result of the operation, is known as three-
address statement. The operator op can be a fixed or floating-point arithmetic operator, or a 
logical operator. X, Y, and Z can be considered either as constants or as predefined names by the 
programmer or temporary names generated by the compiler. This statement is named as the 
“three-address statement” because of the usage of three addresses, one for the result and two for 
the operands. The sequence of such three-address statements is known as three-address code. 
The complicated arithmetic expressions are not allowed in three-address code because only a 
single operation is allowed per statement. For example, consider an expression A + B * C, this 
expression contains more than one operator so the representation of this expression in a single 
three-address statement is not possible. Hence, the three-address code of the given expression is 
as follows: 

      T1: = B * C 

      T2: = A + T1 

where, T1 and T2 are the temporary names generated by the compiler. 

TYPES OF THREE-ADDRESS STATEMENTS: 

There are some cases where a statement consists of less than three addresses and is still known as 
three- address statement. Hence, the different forms of three-address statements are given as 
follows: 

 Assignment statements: These statements can be represented in the following forms: 

o X: = Y op Z, where op is any logical/arithmetic binary operator. 



 

 

o X: = op Y, where op is an unary operator such as logical negation, conversion operators, 
and shift operators. 

o X: = Y, where the value of Y is assigned to operand X. 

  Indexed assignment statements: These statements can be represented in the following 
forms: 

o X: = Y[I] 

o X[I]: = Y, where X, Y and I refer to the data objects and are represented by pointers to 
the symbol table. 

 Address and pointer assignment statements: These statements can be represented in the 
following forms: 

o X: = addr Y defines that X is assigned the address of Y. 

o  X: = *Y defines that X is assigned the content of location pointed to by Y. 

o  *X: = Y sets the r-value of the object pointed to by X to the r-value of Y. 

 Jump statements: Jump statements are of two types-conditional and unconditional that works 
with relational operators and are represented in the following forms: 

o The unconditional jump is represented as goto L, where L being a label. This instruction 
means that the Lth three-address statement is the next to be executed. 

o The conditional jumps such as if X relop Y goto L, where relop signifies the relational 
operator (≤, =, >, etc.) applied between X and Y. This instruction implies that if the result 
of the expression X relop Y is true then the statement labeled L is executed. Otherwise, 
the statement immediately following the if X relop Y goto L is executed. 

 Procedure call/return statements: These statements can be defined in the following forms: 

o param X and call P, n, where they are represented and typically used in the three- address 
statement as follows: 

      param X1 

      param X2 

 

             . 

 



 

 

             . 

 

             . 

 

      param Xn 

 

      call P, n 

 

Here, the sequence of three-address statements is generated as a part of call of the procedure 
P(X1, X2,…, Xn), and n in call P, n is defined as an integer specifying the total number of actual 
parameters in the call. 

o Y = call p, n represents the function call. 

o return Y, represents the return statement, where Y is a returned value. 

IMPLEMENTATION OF THREE-ADDRESS STATEMENTS: 

The three-address statement is an abstract form of intermediate code. Hence, the actual 
implementation of the three-address statements can be done in the following ways: 

o Quadruples 

o Triples 

o Indirect triples 

8. Explain quadruples with the help of a suitable example. 
Ans: Quadruple is defined as a record structure used to represent a three-address statement. It 
consists of four fields. The first field contains the operator, the second and third fields contain the 
operand 1 and operand 2, respectively, and the last field contains the result of that three-address 
statement. For better understanding of quadruple representation of any statement, consider a 
statement, S = -z/a * (x + y), where -z stands for unary minus z. 
To represent this statement into quadruple representation, we first construct the three-address 
code as follows: 
      t1: = x + y 
      t2 = a * t1 
      t3 : = - z 
      t4 : = t3/t2 
      S: = t4 



 

 

The quadruple representation of this three-address code is shown in Figure 4.3. 

 

Figure 4.3 Quadruple Representation for S = -z/a * (x + y) 

9. Define triples and indirect triples. Give suitable examples for each. 
Ans: Triples: A triple is also defined as a record structure that is used to represent a three-
address statement. In triples, for representing any three-address statement three fields are used, 
namely, operator, operand 1 and operand 2, where operand 1 and operand 2 are pointers to either 
symbol table or they are pointers to the records (for temporary variables) within the triple 
representation itself. In this representation, the result field is removed to eliminate the use of 
temporary names referring to symbol table entries. Instead, we refer the results by their positions. 
The pointers to the triple structure are represented by parenthesized numbers, whereas the 
symbol-table pointers are represented by the names themselves. The triples representation of the 
expression is shown in Figure 4.4. 

 

Figure 4.4 Triple Representation for S = -z/a * (x + y) 

In triple representation, the ternary operations X[I] : = Y and X : = Y[I] are represented by using 
two entries in the triple structure as shown in Figure 4.5(a) and (b) respectively. For the 
operation X[I] : = Y, the names X and I are put in one triple, and Y is put in another triple. 
Similarly, for the operation X : = Y[I], we can write two instructions, t: = Y[I], and X: = t. Note 
that instead of referring the temporary t by its name, we refer it by its position in the triple. 
Indirect triples: An indirect triple representation consists of an additional array that contains the 
pointers to the triples in the desired order. Let us define an array A that contains pointers to 
triples in desired order. Indirect triple representation for the statement S given in the previous 
question is shown in Figure 4.6. 



 

 

 

(a) Triple Representation of X[I] : = Y 

 

(b) Triple Representation of X : = Y[I] 

Figure 4.5 More Triple Representations 

 

Figure 4.6 Indirect Triples Representation of S = -z/a * (x + y) 

The main advantage of indirect triple representation is that an optimizing compiler can move an 
instruction by simply reordering the array A, without affecting the triples themselves. 
 

19. Translate the expression X = - (a + b) * (c + d) + (a + b + c) into quadruples and triples. 
Ans: The three-address code for the given expression is given below: 
         t1 : = a + b 
         t2 : = -t1 
         t3 : = c + d 
         t4 : = t2 * t3 
         t5 : = t1 + c 
         t6 : = t4 + t5 
         X : = t6 
The quadruple representation is shown in Figure 4.7. 



 

 

 

Figure 4.7 Quadruple Representation for X = -(a + b) * (c + d) + (a + b + c) 

The triple representation for the given expression is shown in Figure 4.8. 

 

Figure 4.8 Triple Representation for X = -(a + b) * (c + d) + (a + b + c) 

20. Generate the three-address code for the following program segment. 
main( ) 
{ 
       int k = 1; 
       int a[5]; 
       while (k <= 5) 
   { 
       a[k] = 0; 
       k++; 
   } 
} 
Ans: The three-address code for the given program segment is given below: 
  1. k: = 1 
  2. if k <= 5 goto (4) 
  3. goto (8) 
  4. t1: = k * width 
  5. t2: = addr(a)-width 
  6. t2[t1]: = 0 
  7. t3 : = k + 1 
  8. k: = t3 
  9. goto (2) 
10. Next 



 

 

21. Generate the three-address code for the following program segment 
while(x < z and y > s) do 
if x = 1 then 
     z = z + 1 
else 
     while x <= s do 
          x = x + 10; 
Ans: The three-address code for the given program segment is given below: 
  1. if x < z goto (3) 
  2. goto (16) 
  3. if y > s goto (5) 
  4. goto (16) 
5. if x = 1 goto (7) 
  6. goto (10) 
  7. t1: = z + 1 
  8. z: = t1 
  9. goto (1) 
10. if x <= s goto (12) 
11. goto (1) 
12. t2: = x + 10 
13. x: = t2 
14. goto (10) 
15. goto (1) 
16. Next 

21. Generate the three-address code for the following program segment 
while(x < z and y > s) do 
if x = 1 then 
     z = z + 1 
else 
     while x <= s do 
          x = x + 10; 
Ans: The three-address code for the given program segment is given below: 
  1. if x < z goto (3) 
  2. goto (16) 
  3. if y > s goto (5) 
  4. goto (16) 
  5. if x = 1 goto (7) 
  6. goto (10) 
  7. t1: = z + 1 
  8. z: = t1 
  9. goto (1)  



 

 

10. if x <= s goto (12) 
11. goto (1) 
12. t2: = x + 10 
13. x: = t2 
14. goto (10) 
15. goto (1) 
16. Next 

22. Consider the following code segment and generate the three-address code for it. 
for (k = 1; k <= 12; k++) 
      if x < y then a = b + c; 
Ans: The three-address code for the given program segment is given below: 
  1. k: = 1 
  2. if k <= 12 goto (4) 
  3. goto (11) 
  4. if x < y goto (6) 
  5. goto (8) 
  6. t1: = b + c 
  7. a: = t1 
  8. t2: = k + 1 
  9. k: = t2 
10. goto (2) 
11. Next 

23. Translate the following statement, which alters the flow of control of expressions, and 
generate the three-address code for it. 
             while(P < Q)do 
                 if(R < S) then a = b + c; 
Ans: The three-address code for the given statement is as follows: 
1. if P < Q goto (3) 
2. goto (8) 
3. if R < S goto (5) 
4. goto (1) 
5. t1: = b + c 
6. a: = t1 
7. goto (1) 
8. Next 

24. Generate the three-address code for the following program segment where, x and y are 
arrays of size 10 * 10, and there are 4 bytes/word. 
         begin 
            add = 0 
            a = 1 
            b = 1 
            do 



 

 

                  begin 
                     add = add + x[a,b] * y[a,b] 
                     a = a + 1 
                     b = b + 1 
                  end 
             while a <= 10 and b <= 10 
          end 
Ans: The three-address code for the given program segment is given below: 
  1. add: = 0 
  2. a: = 1 
  3. b: = 1 
  4. t1: = a * 10 
  5. t1: = t1 + b 
  6. t1: = t1 * 4 
  7. t2: = addr(x) - 44 
  8. t3: = t2 [t1] 
  9. t4: = b * 10 
10. t4: = t4 + a 
11. t4: = t4 * 4 
12. t5: = addr(y) - 44 
13. t6: = t5[t4] 
14. t7: = t3 * t6 
15. t7: = add + t7 
16. t8: = a + 1 
17. a: = t8 
18. t9: = b + 1 
19. b: = t9 
20. if a <= 10 goto (22) 
21. goto (23) 
22. if b <= 10 goto(4) 
23. Next 

25. Translate the following program segment into three-address statements: 
   switch(a + b) 
   { 
      case 2: {x = y; break;} 
      case 5: switch x 
               { 
                   case 0: {a = b + 1; break;} 
                   case 1: {a = b + 3; break;} 
                   default: {a = 2; break;} 
               } 
       break; 



 

 

   case 9: {x = y - 1; break;} 
   default: {a = 2; break;} 
   } 
Ans: The three-address code for the given program segment is given below: 
  1. t1: = a + b 
  2. goto (23) 
  3. x: = y 
  4. goto (27) 
  5. goto (14) 
  6. t3: = b + 1 
  7. a: = t3 
  8. goto (27) 
  9. t4: = b + 3 
10. a: = t4 
11. goto (27) 
12. a: = 2 
13. goto (27) 
14. if x = 0 goto (6) 
15. if x = 1 goto (9) 
16. goto (12) 
17. goto (27) 
18. t5: = y - 1 
19. a: = t5 
20. goto (27) 
21. a: = 2 
22. goto (27) 
23. if t = 2 goto (3) 
24. if t = 5 goto (5) 
25. if t = 9 goto (18) 
26. goto (21) 
27. Next 
 

MULTIPLE-CHOICE QUESTIONS 
1. Which of the following is not true for the intermediate code? 
(a) It can be represented as postfix notation. 
(b) It can be represented as syntax tree, and or a DAG. 
(c) It can be represented as target code. 
(d) It can be represented as three-address code, quadruples, and triples. 
2. Which of the following is true for intermediate code generation? 
(a) It is machine dependent. 



 

 

(b) It is nearer to the target machine. 
(c) Both (a) and (b) 
(d) None of these 
3. Which of the following is true in the context of high-level representation of intermediate 
languages? 
(a) It is suitable for static type checking. 
(b) It does not depict the natural hierarchical structure of the source program. 
(c) It is nearer to the target program. 
(d) All of these 
4. Which of the following is true for the low-level representation of intermediate languages? 
(a) It requires very few efforts by the source program to generate the low-level representation. 
(b) It is appropriate for machine-dependent tasks like register allocation and instruction selection. 
(c) It does not depict the natural hierarchical structure of the source program. 
(d) All of these 
5. The reverse polish notation or suffix notation is also known as _________ . 
(a) Infix notation 
(b) Prefix notation 
(c) Postfix notation 
(d) None of above 
6. In a two-dimensional array A[i][j], where i is a element of width w1 and j is of width w2, the 
relative address of A[i][j] can be calculated by the formula . 
(a) i * w1 + j * w2 
(b) base + i * w1 + j * w2 
(c) base + i * w1 + j * w1 
(d) base + (i + j) * (w1 + w2) 

ANSWERS 
1.(c)  2. (c)  3. (a)  4. (b)  5. (c)  6. (b) 
 








