PHY 102: DYNAMICS AND ELASTICITY

Chapter:1
 Gravitation

Prof. Dr. N. S. Patil

- Angular velocity, acceleration

$$
\begin{array}{ll}
\omega=\frac{\Delta \theta}{\Delta t}=\frac{\theta_{f}-\theta_{i}}{t_{f}-t_{i}} \quad \alpha=\frac{\omega_{f}-\omega_{i}}{t} & \\
& \\
\text { Rotational/ Linear analogy } & \\
& \omega_{0} \leftrightarrow v_{0} \\
& \Rightarrow \\
& \omega_{f} \leftrightarrow v_{f} \\
& \alpha \leftrightarrow a
\end{array}
$$

$$
\begin{aligned}
& \qquad \begin{array}{l}
\Delta s=r \Delta \theta \\
v_{t}=r \omega \\
a_{t}=r \alpha \\
\text { elelauvil. }
\end{array} \\
& \qquad \begin{array}{l}
\text { (angle in rac } \quad t \leftrightarrow t \\
a_{\text {cent }}=\omega^{2} r=\frac{v^{2}}{r}
\end{array} \quad \text { (to center) }
\end{aligned}
$$

Characteristics of the Gravitational Force

$$
\stackrel{\rho}{F}=G \frac{m_{1} m_{2}}{r^{2}}
$$

-The force is always attractive.
-There is a Newton's third law force pair involved.

-It acts along a line connecting the centers of the two objects (called a Central Force)
-It is inversely proportional to r^{2} (called a "one over r squared" force)
-Experimental measurement show us that it is a conservative force (the gravitational force on earth is conservative-remember? This is a general expression of that same force)

Weight

- Force of gravity on Earth

$$
F_{g}=\frac{G M_{E} m}{R_{E}^{2}}
$$

- But we know $F_{g}=m g$

$$
\Rightarrow g=\frac{G M_{E}}{R_{E}^{2}}
$$

Defining the Potential Energy

 Associated with this Force$$
\begin{gathered}
\Delta U=U_{b}-U_{a}=-W_{a b} \\
W_{a b}=\int_{a}^{b} \mathbf{F} \cdot d \mathbf{s}=\int_{a}^{b} F d r \\
\varrho=G \frac{m_{1} m_{2}}{r^{2}}
\end{gathered}
$$

POTENTIAL ENERGY

- Choose $U=0$ at $r=\infty$

$$
U=-\frac{G M m}{r}
$$

Gravitational Potential Energy Near Earth

$$
U=-\frac{G M m}{R}
$$

Example

Often people say astronauts feel weightless, Gecause there is no gravity in space.

Kepler's Laws

1) Planets move in elliptical orbits with Sun at one of the focal points.
2) Line drawn from Sun to planet sweeps out equal areas in equal times.
3) The square of the orbital period of any planet is proportional to cube of the average distance from the Sun to the planet.

Kepler's First Law

- Planetsmove in elliptic al orbits with the Sun at one focus.
- Any object bound to a notherby an inverse square law will move in an elliptical path
- Second focus is empty

(a)

(b)

Kepler's Second Law

- Line drawn from Sun to planet will sweep out equal areasin equal times
- Area from A to Bequals Area from C to D.

True for any central force due to
angular momentum conservation (next chapter)

Kepler's Third Law

- The square of the orbital period of any planet is proportional to cube of the average distance from the Sun to the planet.

$$
\frac{R^{3}}{T^{2}}=\text { Constant }
$$

- The constant depends on Sun'smass, but is independent of the mass of the planet

Derivation of Kepler's Third Law

$$
\begin{aligned}
F_{\text {grav }} & =\frac{G M m}{R^{2}}=m a_{\text {cent }}=m \omega^{2} R \\
\omega & =\frac{2 \pi}{T} \\
& \Rightarrow \frac{R^{3}}{T^{2}}=\frac{G M}{4 \pi^{2}}
\end{aligned}
$$

ENERGY IN CIRCULAR
 ORBITS

$$
\begin{gathered}
K=\frac{1}{2} m v^{2}=\frac{1}{2} m \frac{G M}{r} \\
K=\frac{G M m}{2 r} \\
U=-\frac{G M m}{r} \\
E=U+K=-\frac{G M m}{2 r}
\end{gathered}
$$

Gravitational Potential Energy

- $\mathrm{PE}=\mathrm{mgh}$ valid only nearEarth's surface
- For a rbitrary altitude

$$
P E=-G \frac{M m}{r}
$$

- Zero reference level is at $r=\infty$

Torque

- Torque, τ, is tendency of a force to rotate object about some axis

$$
\tau=F d
$$

- F is the force
od is the lever arm (ormoment arm) - Units are Newton-meters

